首页 > 最新文献

STEM CELLS最新文献

英文 中文
Unveiling impaired vascular function and cellular heterogeneity in diabetic donor-derived vascular organoids. 揭示糖尿病供体衍生血管器官组织中受损的血管功能和细胞异质性。
IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-25 DOI: 10.1093/stmcls/sxae043
Hojjat Naderi-Meshkin, Wiwit A Wahyu Setyaningsih, Andrew Yacoub, Garrett Carney, Victoria A Cornelius, Clare-Ann Nelson, Sophia Kelaini, Clare Donaghy, Philip D Dunne, Raheleh Amirkhah, Anna Zampetaki, Lingfang Zeng, Alan W Stitt, Noemi Lois, David J Grieve, Andriana Margariti

Vascular organoids (VOs), derived from induced pluripotent stem cells (iPSCs), hold promise as in vitro disease models and drug screening platforms. However, their ability to faithfully recapitulate human vascular disease and cellular composition remains unclear. In this study, we demonstrate that VOs derived from iPSCs of donors with diabetes (DB-VOs) exhibit impaired vascular function compared to non-diabetic VOs (ND-VOs). DB-VOs display elevated levels of reactive oxygen species (ROS), heightened mitochondrial content and activity, increased proinflammatory cytokines, and reduced blood perfusion recovery in vivo. Through comprehensive single-cell RNA sequencing, we uncover molecular and functional differences, as well as signaling networks, between vascular cell types and clusters within DB-VOs. Our analysis identifies major vascular cell types (endothelial cells [ECs], pericytes, and vascular smooth muscle cells) within VOs, highlighting the dichotomy between ECs and mural cells. We also demonstrate the potential need for additional inductions using organ-specific differentiation factors to promote organ-specific identity in VOs. Furthermore, we observe basal heterogeneity within VOs and significant differences between DB-VOs and ND-VOs. Notably, we identify a subpopulation of ECs specific to DB-VOs, showing overrepresentation in the ROS pathway and underrepresentation in the angiogenesis hallmark, indicating signs of aberrant angiogenesis in diabetes. Our findings underscore the potential of VOs for modeling diabetic vasculopathy, emphasize the importance of investigating cellular heterogeneity within VOs for disease modeling and drug discovery, and provide evidence of GAP43 (neuromodulin) expression in ECs, particularly in DB-VOs, with implications for vascular development and disease.

由诱导多能干细胞(iPSC)衍生的血管器官(VO)有望成为体外疾病模型和药物筛选平台。然而,它们忠实再现人类血管疾病和细胞组成的能力仍不清楚。在本研究中,我们证明了与非糖尿病 VOs(ND-VOs)相比,由糖尿病供体的 iPSCs 衍生的 VOs(DB-VOs)表现出受损的血管功能。DB-VOs显示活性氧(ROS)水平升高、线粒体含量和活性增加、促炎细胞因子增加以及体内血液灌注恢复能力下降。通过全面的单细胞 RNA 测序,我们发现了 DB-VOs 中血管细胞类型和细胞簇之间的分子和功能差异以及信号网络。我们的分析确定了VOs内的主要血管细胞类型(内皮细胞、周细胞和血管平滑肌细胞),突出了内皮细胞和壁细胞之间的二分法。我们还证明,可能需要使用器官特异性分化因子进行额外诱导,以促进 VOs 中器官特异性特征的形成。此外,我们还观察到 VOs 内部的基础异质性以及 DB-VOs 和 ND-VOs 之间的显著差异。值得注意的是,我们发现了 DB-VOs 特异的 ECs 亚群,它们在 ROS 通路中的代表性过高,而在血管生成标志中的代表性过低,这表明糖尿病患者的血管生成出现异常。我们的研究结果强调了 VOs 在模拟糖尿病血管病变方面的潜力,强调了研究 VOs 内细胞异质性对疾病建模和药物发现的重要性,并提供了 ECs(尤其是 DB-VOs 中的 ECs)中 GAP43(神经调节蛋白)表达的证据,这对血管发育和疾病具有重要意义。
{"title":"Unveiling impaired vascular function and cellular heterogeneity in diabetic donor-derived vascular organoids.","authors":"Hojjat Naderi-Meshkin, Wiwit A Wahyu Setyaningsih, Andrew Yacoub, Garrett Carney, Victoria A Cornelius, Clare-Ann Nelson, Sophia Kelaini, Clare Donaghy, Philip D Dunne, Raheleh Amirkhah, Anna Zampetaki, Lingfang Zeng, Alan W Stitt, Noemi Lois, David J Grieve, Andriana Margariti","doi":"10.1093/stmcls/sxae043","DOIUrl":"https://doi.org/10.1093/stmcls/sxae043","url":null,"abstract":"<p><p>Vascular organoids (VOs), derived from induced pluripotent stem cells (iPSCs), hold promise as in vitro disease models and drug screening platforms. However, their ability to faithfully recapitulate human vascular disease and cellular composition remains unclear. In this study, we demonstrate that VOs derived from iPSCs of donors with diabetes (DB-VOs) exhibit impaired vascular function compared to non-diabetic VOs (ND-VOs). DB-VOs display elevated levels of reactive oxygen species (ROS), heightened mitochondrial content and activity, increased proinflammatory cytokines, and reduced blood perfusion recovery in vivo. Through comprehensive single-cell RNA sequencing, we uncover molecular and functional differences, as well as signaling networks, between vascular cell types and clusters within DB-VOs. Our analysis identifies major vascular cell types (endothelial cells [ECs], pericytes, and vascular smooth muscle cells) within VOs, highlighting the dichotomy between ECs and mural cells. We also demonstrate the potential need for additional inductions using organ-specific differentiation factors to promote organ-specific identity in VOs. Furthermore, we observe basal heterogeneity within VOs and significant differences between DB-VOs and ND-VOs. Notably, we identify a subpopulation of ECs specific to DB-VOs, showing overrepresentation in the ROS pathway and underrepresentation in the angiogenesis hallmark, indicating signs of aberrant angiogenesis in diabetes. Our findings underscore the potential of VOs for modeling diabetic vasculopathy, emphasize the importance of investigating cellular heterogeneity within VOs for disease modeling and drug discovery, and provide evidence of GAP43 (neuromodulin) expression in ECs, particularly in DB-VOs, with implications for vascular development and disease.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silencing endomucin in bone marrow sinusoids improves hematopoietic stem and progenitor cell homing during transplantation. 沉默骨髓窦中的内黏蛋白可改善移植过程中造血干细胞和祖细胞的归巢。
IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-12 DOI: 10.1093/stmcls/sxae046
Yue Li, Miao Ren, Hu Li, Zuo Zhang, Ke Yuan, Yujin Huang, Shengnan Yuan, Wen Ju, Yuan He, Kailin Xu, Lingyu Zeng

Efficient homing of infused hematopoietic stem and progenitor cells (HSPCs) into the bone marrow (BM) is the prerequisite for successful hematopoietic stem cell transplantation. However, only a small part of infused HSPCs find their way to the BM niche. A better understanding of the mechanisms that facilitate HSPC homing will help to develop strategies to improve the initial HSPC engraftment and subsequent hematopoietic regeneration. Here, we show that irradiation upregulates the endomucin expression of endothelial cells in vivo and in vitro. Furthermore, depletion of endomucin in irradiated endothelial cells with short interfering RNA (siRNA) increases the HSPC-endothelial cell adhesion in vitro. To abrogate the endomucin of BM sinusoidal endothelial cells (BM-SECs) in vivo, we develop a siRNA-loaded bovine serum albumin nanoparticle for targeted delivery. Nanoparticle-mediated siRNA delivery successfully silences endomucin expression in BM-SECs and improves HSPC homing during transplantation. These results reveal that endomucin plays a critical role in HSPC homing during transplantation and that gene-based manipulation of BM-SEC endomucin in vivo can be exploited to improve the efficacy of HSPC transplantation.

将输注的造血干细胞和祖细胞(HSPCs)有效地归入骨髓(BM)是造血干细胞移植成功的先决条件。然而,只有一小部分输注的造血干细胞能进入骨髓龛。更好地了解促进HSPC归巢的机制将有助于制定策略,改善HSPC最初的移植和随后的造血再生。在这里,我们发现辐照可上调体内和体外内皮细胞的内切蛋白表达。此外,用短干扰 RNA(siRNA)去除辐照内皮细胞中的内切蛋白可增加体外 HSPC 与内皮细胞的粘附性。为了在体内消减骨髓窦状内皮细胞(BM-SECs)的内切蛋白,我们开发了一种装载 siRNA 的牛血清白蛋白纳米颗粒,用于靶向递送。纳米颗粒介导的 siRNA 递送成功地抑制了 BM-SECs 中内切酶蛋白的表达,并改善了移植过程中 HSPC 的归巢。这些结果揭示了内切黏蛋白在移植过程中的HSPC归巢过程中起着关键作用,基于基因的体内BM-SEC内切黏蛋白操作可用于提高HSPC移植的疗效。
{"title":"Silencing endomucin in bone marrow sinusoids improves hematopoietic stem and progenitor cell homing during transplantation.","authors":"Yue Li, Miao Ren, Hu Li, Zuo Zhang, Ke Yuan, Yujin Huang, Shengnan Yuan, Wen Ju, Yuan He, Kailin Xu, Lingyu Zeng","doi":"10.1093/stmcls/sxae046","DOIUrl":"https://doi.org/10.1093/stmcls/sxae046","url":null,"abstract":"<p><p>Efficient homing of infused hematopoietic stem and progenitor cells (HSPCs) into the bone marrow (BM) is the prerequisite for successful hematopoietic stem cell transplantation. However, only a small part of infused HSPCs find their way to the BM niche. A better understanding of the mechanisms that facilitate HSPC homing will help to develop strategies to improve the initial HSPC engraftment and subsequent hematopoietic regeneration. Here, we show that irradiation upregulates the endomucin expression of endothelial cells in vivo and in vitro. Furthermore, depletion of endomucin in irradiated endothelial cells with short interfering RNA (siRNA) increases the HSPC-endothelial cell adhesion in vitro. To abrogate the endomucin of BM sinusoidal endothelial cells (BM-SECs) in vivo, we develop a siRNA-loaded bovine serum albumin nanoparticle for targeted delivery. Nanoparticle-mediated siRNA delivery successfully silences endomucin expression in BM-SECs and improves HSPC homing during transplantation. These results reveal that endomucin plays a critical role in HSPC homing during transplantation and that gene-based manipulation of BM-SEC endomucin in vivo can be exploited to improve the efficacy of HSPC transplantation.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BMSCs promote alveolar epithelial cell autophagy to reduce pulmonary fibrosis by inhibiting core fucosylation modifications. BMSCs 通过抑制核心岩藻糖基化修饰促进肺泡上皮细胞自噬,从而减轻肺纤维化。
IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-10 DOI: 10.1093/stmcls/sxae044
Jinying Hu, Nan Wang, Yu Jiang, Yina Li, Biaojie Qin, Zhongzhen Wang, Lili Gao

Background: Idiopathic pulmonary fibrosis is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat pulmonary fibrosis (PF). This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF.

Methods: C57BL/6 male mice, alveolar epithelial cell-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were utilized in this study.

Results: First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were employed to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were utilized to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF.

Conclusions: Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.

背景:特发性肺纤维化是一种慢性进行性间质性肺病,以肺泡上皮细胞(AEC)损伤和成纤维细胞活化为特征。肺泡上皮细胞(AEC)自噬功能不足可能是 AEC 损伤后多种信号通路激活的结果,其中糖蛋白是关键的受体蛋白。糖蛋白中的核心岩藻糖基化(CF)修饰至关重要。骨髓间充质干细胞(BMSCs)具有再生受损组织和治疗肺纤维化(PF)的能力。本研究旨在阐明骨髓间充质干细胞、CF修饰和自噬在肺纤维化中的相互作用关系和机制:方法:分别给 C57BL/6 雄性小鼠、肺泡上皮细胞特异性 FUT8 条件性敲除(CKO)小鼠和 MLE12 细胞注射博莱霉素(BLM)、FUT8 siRNA 和小鼠 BMSCs。本研究采用了组织染色、Western印迹、免疫荧光、自噬通量检测和流式细胞术等实验技术:结果:首先,我们发现在 PF 小鼠和 BLM 诱导的 AEC 损伤模型中,自噬受到抑制,而 FUT8 表达升高。随后,我们利用 CKO 小鼠和转染 FUT8 siRNA 的 MLE12 细胞证明,抑制 CF 修饰可诱导 AEC 自噬并减轻 PF。最后,利用小鼠 BMSCs 证明它们通过抑制 CF 修饰减轻了 AECs 的有害自噬并降低了 PF:结论:抑制 CF 修饰增强了对 AEC 自噬的抑制,降低了小鼠的 PF。此外,通过防止 CF 修饰,BMSCs 可以帮助缺乏自噬的 AECs 并部分缓解 PF。
{"title":"BMSCs promote alveolar epithelial cell autophagy to reduce pulmonary fibrosis by inhibiting core fucosylation modifications.","authors":"Jinying Hu, Nan Wang, Yu Jiang, Yina Li, Biaojie Qin, Zhongzhen Wang, Lili Gao","doi":"10.1093/stmcls/sxae044","DOIUrl":"https://doi.org/10.1093/stmcls/sxae044","url":null,"abstract":"<p><strong>Background: </strong>Idiopathic pulmonary fibrosis is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat pulmonary fibrosis (PF). This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF.</p><p><strong>Methods: </strong>C57BL/6 male mice, alveolar epithelial cell-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were utilized in this study.</p><p><strong>Results: </strong>First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were employed to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were utilized to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF.</p><p><strong>Conclusions: </strong>Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empagliflozin Ameliorates the Impaired Osteogenic Differentiation Ability of Adipose-Derived Stem Cells in Diabetic Osteoporosis by Activating Autophagy. 恩格列净通过激活自噬改善糖尿病骨质疏松症患者脂肪来源干细胞受损的成骨分化能力
IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-08 DOI: 10.1093/stmcls/sxae019
Shuanglin Yang, Ya Lin, Yuping Xie, Ting Fu, Tianli Wu, Xiaorong Lan, Fangzhi Lou, Jingang Xiao

Adipose-derived stem cells (ASCs) from diabetic osteoporosis (DOP) mice showed impaired osteogenic differentiation capacity. Recent studies have shown that in addition to antidiabetic drugs, sodium-glucose co-transporter inhibitor-2 (SGLT-2), empagliflozin, can play multipotent roles through various mechanisms of action. In this study, we aimed to investigate the effects and underlying mechanisms of empagliflozin on osteogenic differentiation of ASCs in DOP mice. Our results showed that osteogenic differentiation potential and autophagy activity weakened in DOP-ASCs when compared to controls. However, empagliflozin enhanced autophagy flux by promoting the formation of autophagosomes and acidification of autophagic lysosomes, resulting in an increase in LC3-II expression and a decrease in SQSTM1 expression. Furthermore, empagliflozin contributed to the reversal of osteogenesis inhibition in DOP-ASCs induced by a diabetic microenvironment. When 3-methyladenine was used to block autophagy activity, empagliflozin could not exert its protective effect on DOP-ASCs. Nonetheless, this study demonstrated that the advent of cellular autophagy attributed to the administration of empagliflozin could ameliorate the impaired osteogenic differentiation potential of ASCs in DOP mice. This finding might be conducive to the application of ASCs transplantation for promoting bone fracture healing and bone regeneration in patients with DOP.

来自糖尿病骨质疏松症(DOP)小鼠的脂肪源性干细胞(ASCs)显示其成骨细胞分化能力受损。最近的研究表明,除了抗糖尿病药物外,钠-葡萄糖协同转运体抑制剂-2(SGLT-2)--恩格列净(empagliflozin)可通过各种作用机制发挥多能作用。本研究旨在探讨empagliflozin对DOP小鼠ASCs成骨分化的影响及其内在机制。结果显示,与对照组相比,DOP-ASCs的成骨分化潜能和自噬活性减弱。然而,empagliflozin通过促进自噬体的形成和自噬溶酶体的酸化来增强自噬通量,从而导致LC3-II表达增加和SQSTM1表达减少。此外,empagliflozin 还有助于逆转糖尿病微环境诱导的 DOP-ASCs 成骨抑制。当使用3-甲基腺嘌呤阻断自噬活性时,empagliflozin不能对DOP-ASCs产生保护作用。然而,本研究表明,服用empagliflozin后细胞自噬的出现可以改善DOP小鼠ASCs成骨分化潜能受损的情况。这一发现可能有助于应用间充质干细胞移植促进DOP患者的骨折愈合和骨再生。
{"title":"Empagliflozin Ameliorates the Impaired Osteogenic Differentiation Ability of Adipose-Derived Stem Cells in Diabetic Osteoporosis by Activating Autophagy.","authors":"Shuanglin Yang, Ya Lin, Yuping Xie, Ting Fu, Tianli Wu, Xiaorong Lan, Fangzhi Lou, Jingang Xiao","doi":"10.1093/stmcls/sxae019","DOIUrl":"10.1093/stmcls/sxae019","url":null,"abstract":"<p><p>Adipose-derived stem cells (ASCs) from diabetic osteoporosis (DOP) mice showed impaired osteogenic differentiation capacity. Recent studies have shown that in addition to antidiabetic drugs, sodium-glucose co-transporter inhibitor-2 (SGLT-2), empagliflozin, can play multipotent roles through various mechanisms of action. In this study, we aimed to investigate the effects and underlying mechanisms of empagliflozin on osteogenic differentiation of ASCs in DOP mice. Our results showed that osteogenic differentiation potential and autophagy activity weakened in DOP-ASCs when compared to controls. However, empagliflozin enhanced autophagy flux by promoting the formation of autophagosomes and acidification of autophagic lysosomes, resulting in an increase in LC3-II expression and a decrease in SQSTM1 expression. Furthermore, empagliflozin contributed to the reversal of osteogenesis inhibition in DOP-ASCs induced by a diabetic microenvironment. When 3-methyladenine was used to block autophagy activity, empagliflozin could not exert its protective effect on DOP-ASCs. Nonetheless, this study demonstrated that the advent of cellular autophagy attributed to the administration of empagliflozin could ameliorate the impaired osteogenic differentiation potential of ASCs in DOP mice. This finding might be conducive to the application of ASCs transplantation for promoting bone fracture healing and bone regeneration in patients with DOP.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: Therapeutic Efficacy and Fate of Bimodal Engineered Stem Cells in Malignant Brain Tumors. 表达关切:双模工程干细胞在恶性脑肿瘤中的疗效和命运。
IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-08 DOI: 10.1093/stmcls/sxae012
{"title":"Expression of Concern: Therapeutic Efficacy and Fate of Bimodal Engineered Stem Cells in Malignant Brain Tumors.","authors":"","doi":"10.1093/stmcls/sxae012","DOIUrl":"10.1093/stmcls/sxae012","url":null,"abstract":"","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-specificity phosphatases 13 and 27 as key switches in muscle stem cell transition from proliferation to differentiation. 双特异性磷酸酶13和27是肌肉干细胞从增殖向分化转变的关键开关。
IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-08 DOI: 10.1093/stmcls/sxae045
Takuto Hayashi, Shunya Sadaki, Ryosuke Tsuji, Risa Okada, Sayaka Fuseya, Maho Kanai, Ayano Nakamura, Yui Okamura, Masafumi Muratani, Gu Wenchao, Takehito Sugasawa, Seiya Mizuno, Eiji Warabi, Takashi Kudo, Satoru Takahashi, Ryo Fujita

Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear. Using previously established MyoD knock-in (MyoD-KI) mice, we revealed that MyoD targets dual-specificity phosphatase (Dusp) 13 and Dusp27. In Dusp13:Dusp27 double knock-out (DKO) mice, the ability for muscle regeneration after injury was reduced. Moreover, single-cell RNA sequencing of MyoD-high expressing MuSCs from MyoD-KI mice revealed that Dusp13 and Dusp27 are expressed only in specific populations within MyoD-high MuSCs, which also express Myogenin. Overexpressing Dusp13 in MuSCs causes premature muscle differentiation. Thus, we propose a model where DUSP13 and DUSP27 contribute to the fate transition of MuSCs from proliferation to differentiation during myogenesis.

肌肉再生取决于肌肉干细胞(MuSC)的活性。包括肌母细胞决定蛋白1(MyoD)在内的肌肉生成调节因子可调节肌肉干细胞的命运转变。然而,MYOD在这一过程中的直接靶点尚不完全清楚。利用之前建立的 MyoD 基因敲入(MyoD-KI)小鼠,我们发现 MyoD 的靶标是双特异性磷酸酶(Dusp)13 和 Dusp27。在Dusp13:Dusp27双基因敲除(DKO)小鼠中,损伤后肌肉再生能力降低。此外,对MyoD-KI小鼠的MyoD高表达MuSCs进行单细胞RNA测序发现,Dusp13和Dusp27仅在MyoD高表达MuSCs的特定群体中表达,而这些群体也表达肌原蛋白。在MuSCs中过表达Dusp13会导致肌肉过早分化。因此,我们提出了一个模型,在该模型中,DUSP13和DUSP27有助于MuSCs在肌肉生成过程中从增殖到分化的命运转变。
{"title":"Dual-specificity phosphatases 13 and 27 as key switches in muscle stem cell transition from proliferation to differentiation.","authors":"Takuto Hayashi, Shunya Sadaki, Ryosuke Tsuji, Risa Okada, Sayaka Fuseya, Maho Kanai, Ayano Nakamura, Yui Okamura, Masafumi Muratani, Gu Wenchao, Takehito Sugasawa, Seiya Mizuno, Eiji Warabi, Takashi Kudo, Satoru Takahashi, Ryo Fujita","doi":"10.1093/stmcls/sxae045","DOIUrl":"https://doi.org/10.1093/stmcls/sxae045","url":null,"abstract":"<p><p>Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear. Using previously established MyoD knock-in (MyoD-KI) mice, we revealed that MyoD targets dual-specificity phosphatase (Dusp) 13 and Dusp27. In Dusp13:Dusp27 double knock-out (DKO) mice, the ability for muscle regeneration after injury was reduced. Moreover, single-cell RNA sequencing of MyoD-high expressing MuSCs from MyoD-KI mice revealed that Dusp13 and Dusp27 are expressed only in specific populations within MyoD-high MuSCs, which also express Myogenin. Overexpressing Dusp13 in MuSCs causes premature muscle differentiation. Thus, we propose a model where DUSP13 and DUSP27 contribute to the fate transition of MuSCs from proliferation to differentiation during myogenesis.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: Stem Cells Engineered During Different Stages of Reprogramming Reveal Varying Therapeutic Efficacies. 表达关注:在重编程的不同阶段设计的干细胞显示出不同的疗效。
IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-08 DOI: 10.1093/stmcls/sxae014
{"title":"Expression of Concern: Stem Cells Engineered During Different Stages of Reprogramming Reveal Varying Therapeutic Efficacies.","authors":"","doi":"10.1093/stmcls/sxae014","DOIUrl":"10.1093/stmcls/sxae014","url":null,"abstract":"","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arp2/3 mediated dynamic lamellipodia of the hPSC colony edges promote liposome-based DNA delivery. 由 Arp2/3 介导的 hPSC 群体边缘动态片层促进脂质体 DNA 输送。
IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-08 DOI: 10.1093/stmcls/sxae033
Michelle Surma, Kavitha Anbarasu, Arupratan Das

Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.

阳离子脂质体介导的药物、DNA 或 RNA 递送在小分子疗法、基因编辑和免疫中发挥着关键作用。然而,我们目前对促进这一过程的细胞结构的了解仍然有限。在这里,我们使用了人类多能干细胞(hPSCs),它们形成了紧凑的集落,集落的外围是动态活跃的细胞,核心是上皮样细胞。我们发现,集落边缘的细胞通过依赖于肌动蛋白相关蛋白2/3(Arp2/3)的动态薄片,选择性地被阳离子脂质体转染,而肌球蛋白II抑制剂会增强这种转染。相反,核心细胞在其顶端表面建立紧密连接,阻碍脂质体进入基底片层,从而抑制转染。与此相反,含有甘露糖基化脂质的脂质体通过受体介导的内吞作用在整个菌落中被内化。这些发现为通过脂质体加强治疗递送提供了新的机理见解,尤其是在以动态薄层为特征的细胞类型中,如免疫细胞或上皮细胞层。
{"title":"Arp2/3 mediated dynamic lamellipodia of the hPSC colony edges promote liposome-based DNA delivery.","authors":"Michelle Surma, Kavitha Anbarasu, Arupratan Das","doi":"10.1093/stmcls/sxae033","DOIUrl":"10.1093/stmcls/sxae033","url":null,"abstract":"<p><p>Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140890827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein Crotonylation Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells via the PI3K-AKT Pathway. 蛋白巴豆酰化通过 PI3K-AKT 通路促进牙周韧带干细胞的成骨分化。
IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-08 DOI: 10.1093/stmcls/sxae018
Ruohui Han, Rui Dang, Fan Liu, Shaochen Nie, Shaofei Tao, Liangyu Xing, Tianle Yang, Meilin Hu, Dayong Liu

Posttranslational modifications (PTMs) are crucial regulatory mechanisms for cellular differentiation and organismal development. Acylation modification is one of the main PTMs that plays a pivotal role in regulating the osteogenic differentiation of mesenchymal stem cells and is a focal point of research in bone tissue regeneration. However, its mechanism remains incompletely understood. This article aims to investigate the impact of protein crotonylation on osteogenic differentiation in periodontal ligament stem cells (PDLSCs) and elucidate its underlying mechanisms. Western blot analysis identified that the modification level of acetylation, crotonylation, and succinylation were significantly upregulated after osteogenic induction of PDLSCs. Subsequently, sodium crotonate (NaCr) was added to the medium and acyl-CoA synthetase short-chain family member 2 (ACSS2) was knocked down by short hairpin RNA plasmids to regulate the total level of protein crotonylation. The results indicated that treatment with NaCr promoted the expression of osteogenic differentiation-related factors in PDLSCs, whereas silencing ACSS2 had the opposite effect. In addition, mass spectrometry analysis was used to investigate the comprehensive analysis of proteome-wide crotonylation in PDLSCs under osteogenic differentiation. The analysis revealed that the level of protein crotonylation related to the PI3K-AKT signaling pathway was significantly upregulated in PDLSCs after osteogenic induction. Treatment with NaCr and silencing ACSS2 affected the activation of the PI3K-AKT signaling pathway. Collectively, our study demonstrates that protein crotonylation promotes osteogenic differentiation of PDLSCs via the PI3K-AKT pathway, providing a novel targeting therapeutic approach for bone tissue regeneration.

翻译后修饰是细胞分化和机体发育的重要调控机制。酰化修饰是主要的翻译后修饰之一,在调节间充质干细胞的成骨分化过程中发挥着关键作用,是骨组织再生研究的一个焦点。然而,人们对其机理的了解仍不全面。本文旨在研究蛋白质巴豆酰化对牙周韧带干细胞(PDLSCs)成骨分化的影响,并阐明其潜在机制。Western 印迹分析发现,诱导 PDLSCs 成骨后,乙酰化、巴豆酸钠和琥珀酰化的修饰水平显著上调。随后,在培养基中加入巴豆酸钠(NaCr),并通过短发夹RNA质粒敲除酰基-CoA合成酶短链家族成员2(ACSS2)来调控蛋白质巴豆酰化的总水平。结果表明,用NaCr处理可促进PDLSCs中成骨细胞分化相关因子的表达,而沉默ACSS2则会产生相反的效果。此外,质谱分析还用于全面分析成骨分化过程中 PDLSCs 蛋白质全范围的巴豆酰化。分析结果显示,成骨诱导后,PDLSCs 中与 PI3K-AKT 信号通路相关的蛋白质巴豆酰化水平显著上调。用 NaCr 处理和沉默 ACSS2 会影响 PI3K-AKT 信号通路的激活。总之,我们的研究表明蛋白质巴豆酰化可通过PI3K-AKT途径促进PDLSCs的成骨分化,为骨组织再生提供了一种新的靶向治疗方法。
{"title":"Protein Crotonylation Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells via the PI3K-AKT Pathway.","authors":"Ruohui Han, Rui Dang, Fan Liu, Shaochen Nie, Shaofei Tao, Liangyu Xing, Tianle Yang, Meilin Hu, Dayong Liu","doi":"10.1093/stmcls/sxae018","DOIUrl":"10.1093/stmcls/sxae018","url":null,"abstract":"<p><p>Posttranslational modifications (PTMs) are crucial regulatory mechanisms for cellular differentiation and organismal development. Acylation modification is one of the main PTMs that plays a pivotal role in regulating the osteogenic differentiation of mesenchymal stem cells and is a focal point of research in bone tissue regeneration. However, its mechanism remains incompletely understood. This article aims to investigate the impact of protein crotonylation on osteogenic differentiation in periodontal ligament stem cells (PDLSCs) and elucidate its underlying mechanisms. Western blot analysis identified that the modification level of acetylation, crotonylation, and succinylation were significantly upregulated after osteogenic induction of PDLSCs. Subsequently, sodium crotonate (NaCr) was added to the medium and acyl-CoA synthetase short-chain family member 2 (ACSS2) was knocked down by short hairpin RNA plasmids to regulate the total level of protein crotonylation. The results indicated that treatment with NaCr promoted the expression of osteogenic differentiation-related factors in PDLSCs, whereas silencing ACSS2 had the opposite effect. In addition, mass spectrometry analysis was used to investigate the comprehensive analysis of proteome-wide crotonylation in PDLSCs under osteogenic differentiation. The analysis revealed that the level of protein crotonylation related to the PI3K-AKT signaling pathway was significantly upregulated in PDLSCs after osteogenic induction. Treatment with NaCr and silencing ACSS2 affected the activation of the PI3K-AKT signaling pathway. Collectively, our study demonstrates that protein crotonylation promotes osteogenic differentiation of PDLSCs via the PI3K-AKT pathway, providing a novel targeting therapeutic approach for bone tissue regeneration.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Parkinson's disease treatment: cell replacement therapy with neurons derived from pluripotent stem cells. 推进帕金森病治疗:多能干细胞衍生神经元的细胞替代疗法。
IF 4 2区 医学 Q1 Medicine Pub Date : 2024-06-21 DOI: 10.1093/stmcls/sxae042
Branden J Clark, Mariah J Lelos, Jeanne F Loring

The motor symptoms of Parkinson's disease (PD) are caused by the progressive loss of dopamine neurons from the substantia nigra. There are currently no treatments that can slow or reverse the neurodegeneration. To restore the lost neurons, international groups have initiated clinical trials using human embryonic or induced pluripotent stem cells (PSCs) to derive dopamine neuron precursors that are used as transplants to replace the lost neurons. Proof of principle experiments in the 1980s and 1990s showed that grafts of fetal ventral mesencephalon, which contains the precursors of the substantial nigra, could, under rare circumstances, reverse symptoms of the disease. Improvements in PSC technology and genomics have inspired researchers to design clinical trials using PSC-derived dopamine neuron precursors as cell replacement therapy for PD. We focus here on four such first-in-human clinical trials that have begun in the US, Europe, and Japan. We provide an overview of the sources of PSCs and the methods used to generate cells for transplantation. We discuss pros and cons of strategies for allogeneic, immune-matched, and autologous approaches and novel methods for overcoming rejection by the immune system. We consider challenges for safety and efficacy of the cells for durable engraftment, focusing on the genomics-based quality control methods to assure that the cells will not become cancerous. Finally, since clinical trials like these have never been undertaken before, we comment on the value of cooperation among rivals to contribute to advancements that will finally provide relief for the millions suffering from the symptoms of PD.

帕金森病(PD)的运动症状是由黑质多巴胺神经元的逐渐丧失引起的。目前还没有任何治疗方法可以减缓或逆转神经变性。为了恢复丢失的神经元,国际研究小组已经启动了临床试验,利用人类胚胎干细胞或诱导多能干细胞(PSCs)提取多巴胺神经元前体,并将其作为移植体来替代丢失的神经元。20世纪80年代和90年代的原理验证实验表明,在极少数情况下,移植含有实质性黑质神经元前体的胎儿腹侧间脑可以逆转疾病症状。PSC技术和基因组学的改进激发了研究人员的灵感,他们设计了使用PSC衍生的多巴胺神经元前体作为治疗帕金森病的细胞替代疗法的临床试验。在此,我们将重点介绍已在美国、欧洲和日本开始的四项此类首次人体临床试验。我们概述了多巴胺神经元前体的来源和用于产生移植细胞的方法。我们讨论了异体、免疫匹配和自体移植策略的利弊,以及克服免疫系统排斥反应的新方法。我们考虑了细胞持久移植的安全性和有效性所面临的挑战,重点是基于基因组学的质量控制方法,以确保细胞不会癌变。最后,由于类似的临床试验以前从未进行过,我们对竞争对手之间合作的价值进行了评论,以促进最终为数以百万计的帕金森病症状患者提供缓解的进步。
{"title":"Advancing Parkinson's disease treatment: cell replacement therapy with neurons derived from pluripotent stem cells.","authors":"Branden J Clark, Mariah J Lelos, Jeanne F Loring","doi":"10.1093/stmcls/sxae042","DOIUrl":"https://doi.org/10.1093/stmcls/sxae042","url":null,"abstract":"<p><p>The motor symptoms of Parkinson's disease (PD) are caused by the progressive loss of dopamine neurons from the substantia nigra. There are currently no treatments that can slow or reverse the neurodegeneration. To restore the lost neurons, international groups have initiated clinical trials using human embryonic or induced pluripotent stem cells (PSCs) to derive dopamine neuron precursors that are used as transplants to replace the lost neurons. Proof of principle experiments in the 1980s and 1990s showed that grafts of fetal ventral mesencephalon, which contains the precursors of the substantial nigra, could, under rare circumstances, reverse symptoms of the disease. Improvements in PSC technology and genomics have inspired researchers to design clinical trials using PSC-derived dopamine neuron precursors as cell replacement therapy for PD. We focus here on four such first-in-human clinical trials that have begun in the US, Europe, and Japan. We provide an overview of the sources of PSCs and the methods used to generate cells for transplantation. We discuss pros and cons of strategies for allogeneic, immune-matched, and autologous approaches and novel methods for overcoming rejection by the immune system. We consider challenges for safety and efficacy of the cells for durable engraftment, focusing on the genomics-based quality control methods to assure that the cells will not become cancerous. Finally, since clinical trials like these have never been undertaken before, we comment on the value of cooperation among rivals to contribute to advancements that will finally provide relief for the millions suffering from the symptoms of PD.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
STEM CELLS
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1