Statistical Learning Methods for Neuroimaging Data Analysis with Applications.

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Annual Review of Biomedical Data Science Pub Date : 2023-08-10 DOI:10.1146/annurev-biodatasci-020722-100353
Hongtu Zhu, Tengfei Li, Bingxin Zhao
{"title":"Statistical Learning Methods for Neuroimaging Data Analysis with Applications.","authors":"Hongtu Zhu,&nbsp;Tengfei Li,&nbsp;Bingxin Zhao","doi":"10.1146/annurev-biodatasci-020722-100353","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this review is to provide a comprehensive survey of statistical challenges in neuroimaging data analysis, from neuroimaging techniques to large-scale neuroimaging studies and statistical learning methods. We briefly review eight popular neuroimaging techniques and their potential applications in neuroscience research and clinical translation. We delineate four themes of neuroimaging data and review major image processing analysis methods for processing neuroimaging data at the individual level. We briefly review four large-scale neuroimaging-related studies and a consortium on imaging genomics and discuss four themes of neuroimaging data analysis at the population level. We review nine major population-based statistical analysis methods and their associated statistical challenges and present recent progress in statistical methodology to address these challenges.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"6 ","pages":"73-104"},"PeriodicalIF":7.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-020722-100353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

The aim of this review is to provide a comprehensive survey of statistical challenges in neuroimaging data analysis, from neuroimaging techniques to large-scale neuroimaging studies and statistical learning methods. We briefly review eight popular neuroimaging techniques and their potential applications in neuroscience research and clinical translation. We delineate four themes of neuroimaging data and review major image processing analysis methods for processing neuroimaging data at the individual level. We briefly review four large-scale neuroimaging-related studies and a consortium on imaging genomics and discuss four themes of neuroimaging data analysis at the population level. We review nine major population-based statistical analysis methods and their associated statistical challenges and present recent progress in statistical methodology to address these challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经影像数据分析的统计学习方法及其应用。
这篇综述的目的是对神经成像数据分析中的统计挑战进行全面的调查,从神经成像技术到大规模神经成像研究和统计学习方法。我们简要回顾了八种流行的神经成像技术及其在神经科学研究和临床翻译中的潜在应用。我们描述了神经成像数据的四个主题,并回顾了在个体水平上处理神经成像数据的主要图像处理分析方法。我们简要回顾了四项大型神经成像相关研究和一个成像基因组学联盟,并讨论了人群水平上神经成像数据分析的四个主题。我们回顾了九种主要的基于人口的统计分析方法及其相关的统计挑战,并介绍了统计方法的最新进展,以应对这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
期刊最新文献
Spatial Transcriptomics Brings New Challenges and Opportunities for Trajectory Inference. The Evolutionary Interplay of Somatic and Germline Mutation Rates. Centralized and Federated Models for the Analysis of Clinical Data. Mapping the Human Cell Surface Interactome: A Key to Decode Cell-to-Cell Communication. Data Science Methods for Real-World Evidence Generation in Real-World Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1