Evaluation and Regulation of Artificial Intelligence Medical Devices for Clinical Decision Support.

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Annual Review of Biomedical Data Science Pub Date : 2025-02-19 DOI:10.1146/annurev-biodatasci-103123-095824
Gary E Weissman
{"title":"Evaluation and Regulation of Artificial Intelligence Medical Devices for Clinical Decision Support.","authors":"Gary E Weissman","doi":"10.1146/annurev-biodatasci-103123-095824","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) methods were first developed nearly seven decades ago. Only in recent years have they demonstrated their potential to improve clinical care at the bedside. AI systems are now capable of interpreting, predicting, and even generating important medical information. AI medical devices share many similarities with traditional medical devices but also diverge from them in important ways. Despite widespread optimism and enthusiasm surrounding the use of such devices to improve care processes, patient outcomes, and the healthcare experience for patients, caregivers, and clinicians alike, little evidence exists so far for their effectiveness in practice. Even less is known about the safety or equity of AI medical devices. As with any new technology, this exciting time is accompanied by appropriate questions regarding if, how much, when, and who such AI systems really help. Different stakeholders, ranging from patients to clinicians to industry device developers, may have divergent preferences or assessments of risk and benefits, warranting an informed public discussion to guide emerging regulatory efforts. This review summarizes the rapidly evolving recent efforts and evidence related to the regulation and evaluation of AI medical devices and highlights opportunities for future work to ensure their effectiveness, safety, and equity.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-103123-095824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) methods were first developed nearly seven decades ago. Only in recent years have they demonstrated their potential to improve clinical care at the bedside. AI systems are now capable of interpreting, predicting, and even generating important medical information. AI medical devices share many similarities with traditional medical devices but also diverge from them in important ways. Despite widespread optimism and enthusiasm surrounding the use of such devices to improve care processes, patient outcomes, and the healthcare experience for patients, caregivers, and clinicians alike, little evidence exists so far for their effectiveness in practice. Even less is known about the safety or equity of AI medical devices. As with any new technology, this exciting time is accompanied by appropriate questions regarding if, how much, when, and who such AI systems really help. Different stakeholders, ranging from patients to clinicians to industry device developers, may have divergent preferences or assessments of risk and benefits, warranting an informed public discussion to guide emerging regulatory efforts. This review summarizes the rapidly evolving recent efforts and evidence related to the regulation and evaluation of AI medical devices and highlights opportunities for future work to ensure their effectiveness, safety, and equity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
期刊最新文献
Genetic Studies Through the Lens of Gene Networks. Evaluation and Regulation of Artificial Intelligence Medical Devices for Clinical Decision Support. Foundation Models for Translational Cancer Biology. Conditional Generative Models for Synthetic Tabular Data: Applications for Precision Medicine and Diverse Representations. Spatial Transcriptomics Brings New Challenges and Opportunities for Trajectory Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1