{"title":"Evaluation and Regulation of Artificial Intelligence Medical Devices for Clinical Decision Support.","authors":"Gary E Weissman","doi":"10.1146/annurev-biodatasci-103123-095824","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) methods were first developed nearly seven decades ago. Only in recent years have they demonstrated their potential to improve clinical care at the bedside. AI systems are now capable of interpreting, predicting, and even generating important medical information. AI medical devices share many similarities with traditional medical devices but also diverge from them in important ways. Despite widespread optimism and enthusiasm surrounding the use of such devices to improve care processes, patient outcomes, and the healthcare experience for patients, caregivers, and clinicians alike, little evidence exists so far for their effectiveness in practice. Even less is known about the safety or equity of AI medical devices. As with any new technology, this exciting time is accompanied by appropriate questions regarding if, how much, when, and who such AI systems really help. Different stakeholders, ranging from patients to clinicians to industry device developers, may have divergent preferences or assessments of risk and benefits, warranting an informed public discussion to guide emerging regulatory efforts. This review summarizes the rapidly evolving recent efforts and evidence related to the regulation and evaluation of AI medical devices and highlights opportunities for future work to ensure their effectiveness, safety, and equity.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-103123-095824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) methods were first developed nearly seven decades ago. Only in recent years have they demonstrated their potential to improve clinical care at the bedside. AI systems are now capable of interpreting, predicting, and even generating important medical information. AI medical devices share many similarities with traditional medical devices but also diverge from them in important ways. Despite widespread optimism and enthusiasm surrounding the use of such devices to improve care processes, patient outcomes, and the healthcare experience for patients, caregivers, and clinicians alike, little evidence exists so far for their effectiveness in practice. Even less is known about the safety or equity of AI medical devices. As with any new technology, this exciting time is accompanied by appropriate questions regarding if, how much, when, and who such AI systems really help. Different stakeholders, ranging from patients to clinicians to industry device developers, may have divergent preferences or assessments of risk and benefits, warranting an informed public discussion to guide emerging regulatory efforts. This review summarizes the rapidly evolving recent efforts and evidence related to the regulation and evaluation of AI medical devices and highlights opportunities for future work to ensure their effectiveness, safety, and equity.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.