A putative loop connection between VTA dopamine neurons and nucleus accumbens encodes positive valence to compensate for hunger

IF 6.7 2区 医学 Q1 NEUROSCIENCES Progress in Neurobiology Pub Date : 2023-10-01 DOI:10.1016/j.pneurobio.2023.102503
Xiao Cui , Qiuping Tong , Hao Xu, Chuantong Xie, Lei Xiao
{"title":"A putative loop connection between VTA dopamine neurons and nucleus accumbens encodes positive valence to compensate for hunger","authors":"Xiao Cui ,&nbsp;Qiuping Tong ,&nbsp;Hao Xu,&nbsp;Chuantong Xie,&nbsp;Lei Xiao","doi":"10.1016/j.pneurobio.2023.102503","DOIUrl":null,"url":null,"abstract":"<div><p><span>Dopamine (DA) signal play pivotal roles in regulating motivated behaviors, including feeding behavior, but the role of midbrain DA neurons in modulating food intake and neural circuitry mechanisms remain largely unknown. Here, we found that activating but not inhibiting </span>ventral tegmental area<span> (VTA) DA neurons reduces mouse food intake. Furthermore, DA neurons in ventral VTA, especially neurons projecting to the medial nucleus accumbens<span><span> (NAc), are activated by refeeding in the 24 h fasted mice. Combing neural circuitry tracing, optogenetic, chemogenetic, and pharmacological manipulations, we established that the VTA→medial NAc→VTA loop circuit is critical for the VTA DA neurons activation-induced food intake reduction. Moreover, activating either VTA DA neurons or </span>dopaminergic axons in medial NAc elevates positive valence, which will compensate for the hungry-induced food intake. Thus, our study identifies a subset of positive valence-encoded VTA DA neurons forming possible loop connections with medial NAc that are anorexigenic.</span></span></p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"229 ","pages":"Article 102503"},"PeriodicalIF":6.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008223001041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Dopamine (DA) signal play pivotal roles in regulating motivated behaviors, including feeding behavior, but the role of midbrain DA neurons in modulating food intake and neural circuitry mechanisms remain largely unknown. Here, we found that activating but not inhibiting ventral tegmental area (VTA) DA neurons reduces mouse food intake. Furthermore, DA neurons in ventral VTA, especially neurons projecting to the medial nucleus accumbens (NAc), are activated by refeeding in the 24 h fasted mice. Combing neural circuitry tracing, optogenetic, chemogenetic, and pharmacological manipulations, we established that the VTA→medial NAc→VTA loop circuit is critical for the VTA DA neurons activation-induced food intake reduction. Moreover, activating either VTA DA neurons or dopaminergic axons in medial NAc elevates positive valence, which will compensate for the hungry-induced food intake. Thus, our study identifies a subset of positive valence-encoded VTA DA neurons forming possible loop connections with medial NAc that are anorexigenic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VTA多巴胺神经元和伏隔核之间的假定环连接编码正价以补偿饥饿
多巴胺(DA)信号在调节包括进食行为在内的动机行为中发挥着关键作用,但中脑DA神经元在调节食物摄入和神经回路机制中的作用在很大程度上仍然未知。在这里,我们发现激活但不抑制腹侧被盖区(VTA)DA神经元可以减少小鼠的食物摄入。此外,在禁食24小时的小鼠中,腹侧VTA中的DA神经元,特别是投射到伏隔内侧核(NAc)的神经元,通过再喂养被激活。结合神经回路追踪、光遗传学、化学遗传学和药理学操作,我们确定VTA→内侧NAc→VTA环路对于VTA-DA神经元激活诱导的食物摄入减少至关重要。此外,激活内侧NAc中的VTA-DA神经元或多巴胺能轴突会提高正价,这将补偿饥饿诱导的食物摄入。因此,我们的研究确定了一个正价编码的VTA-DA神经元的子集,这些神经元可能与厌食症的内侧NAc形成环连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Neurobiology
Progress in Neurobiology 医学-神经科学
CiteScore
12.80
自引率
1.50%
发文量
107
审稿时长
33 days
期刊介绍: Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.
期刊最新文献
Microproteins encoded by short open reading frames: Vital regulators in neurological diseases Purinergic-associated immune responses in neurodegenerative diseases Receptor-dependent influence of R7 RGS proteins on neuronal GIRK channel signaling dynamics CB1 receptors in NG2 cells mediate cannabinoid-evoked functional myelin regeneration Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1