Nicha Puangmalai , Abbigael E. Aday , Madison Samples , Nemil Bhatt , Filippa Lo Cascio , Michela Marcatti , Suhyeorn J. Park , Leiana Fung , Cynthia Jerez , Luiz O. Penalva , Yingxin Zhao , Haiping Hao , Doreen Lugano , Rakez Kayed , Mauro Montalbano
{"title":"Pathogenic oligomeric Tau alters neuronal RNA processes through the formation of nuclear heteromeric amyloids with RNA-binding protein Musashi1","authors":"Nicha Puangmalai , Abbigael E. Aday , Madison Samples , Nemil Bhatt , Filippa Lo Cascio , Michela Marcatti , Suhyeorn J. Park , Leiana Fung , Cynthia Jerez , Luiz O. Penalva , Yingxin Zhao , Haiping Hao , Doreen Lugano , Rakez Kayed , Mauro Montalbano","doi":"10.1016/j.pneurobio.2025.102742","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s disease (AD) is marked by cytoplasmic proteinopathies, primarily involving misfolded Tau protein. Pathogenic Tau species, such as soluble oligomers and fibrils, disrupt RNA metabolism, though the mechanisms are unclear. Recent research indicates that RNA has a crucial role in Tau aggregation. Our study builds on this by noting significant co-deposition of RNA-Binding Proteins (RBPs) with Tau in AD and Frontotemporal dementia (FTLD) brains. Using molecular and cellular techniques, we investigate the interaction between RNA dynamics and Tau aggregation, focusing on the localization and aggregation of Tau and RBPs, particularly Musashi (MSI), within neuronal nuclei. Through cyto-fluorometric, biochemical, and cellular assays, we reveal the importance of Tau/RBP interplay in primary cortical neurons expressing wild-type and mutant Tau. Pathogenic Tau oligomers alter MSI protein localization and function, causing cytoplasmic and nuclear aggregation. Mass spectrometry of the MSI1 nuclear interactome in Tau models shows disrupted RNA metabolism pathways, including ribosomal biogenesis, RNA splicing, and protein folding. Moreover, RNA immunoprecipitation assay revealed a remarkable impact of mutant P301L Tau on MSI1 ability to bind RNA targets. These findings highlight potential targets for early neurodegenerative therapeutic interventions.</div></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"247 ","pages":"Article 102742"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008225000334","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is marked by cytoplasmic proteinopathies, primarily involving misfolded Tau protein. Pathogenic Tau species, such as soluble oligomers and fibrils, disrupt RNA metabolism, though the mechanisms are unclear. Recent research indicates that RNA has a crucial role in Tau aggregation. Our study builds on this by noting significant co-deposition of RNA-Binding Proteins (RBPs) with Tau in AD and Frontotemporal dementia (FTLD) brains. Using molecular and cellular techniques, we investigate the interaction between RNA dynamics and Tau aggregation, focusing on the localization and aggregation of Tau and RBPs, particularly Musashi (MSI), within neuronal nuclei. Through cyto-fluorometric, biochemical, and cellular assays, we reveal the importance of Tau/RBP interplay in primary cortical neurons expressing wild-type and mutant Tau. Pathogenic Tau oligomers alter MSI protein localization and function, causing cytoplasmic and nuclear aggregation. Mass spectrometry of the MSI1 nuclear interactome in Tau models shows disrupted RNA metabolism pathways, including ribosomal biogenesis, RNA splicing, and protein folding. Moreover, RNA immunoprecipitation assay revealed a remarkable impact of mutant P301L Tau on MSI1 ability to bind RNA targets. These findings highlight potential targets for early neurodegenerative therapeutic interventions.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.