Conjugated quantitative structure-property relationship models: Prediction of kinetic characteristics linked by the Arrhenius equation.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2023-10-01 Epub Date: 2023-08-21 DOI:10.1002/minf.202200275
Dmitry Zankov, Timur Madzhidov, Igor Baskin, Alexandre Varnek
{"title":"Conjugated quantitative structure-property relationship models: Prediction of kinetic characteristics linked by the Arrhenius equation.","authors":"Dmitry Zankov,&nbsp;Timur Madzhidov,&nbsp;Igor Baskin,&nbsp;Alexandre Varnek","doi":"10.1002/minf.202200275","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugated QSPR models for reactions integrate fundamental chemical laws expressed by mathematical equations with machine learning algorithms. Herein we present a methodology for building conjugated QSPR models integrated with the Arrhenius equation. Conjugated QSPR models were used to predict kinetic characteristics of cycloaddition reactions related by the Arrhenius equation: rate constant <math> <semantics><mrow><mi>l</mi> <mi>o</mi> <mi>g</mi> <mi>k</mi></mrow> <annotation>${{\\rm l}{\\rm o}{\\rm g}k}$</annotation> </semantics> </math> , pre-exponential factor <math> <semantics><mrow><mi>l</mi> <mi>o</mi> <mi>g</mi> <mi>A</mi></mrow> <annotation>${{\\rm l}{\\rm o}{\\rm g}A}$</annotation> </semantics> </math> , and activation energy <math> <semantics><msub><mi>E</mi> <mi>a</mi></msub> <annotation>${{E}_{{\\rm a}}}$</annotation> </semantics> </math> . They were benchmarked against single-task (individual and equation-based models) and multi-task models. In individual models, all characteristics were modeled separately, while in multi-task models <math> <semantics><mrow><mi>l</mi> <mi>o</mi> <mi>g</mi> <mi>k</mi></mrow> <annotation>${{\\rm l}{\\rm o}{\\rm g}k}$</annotation> </semantics> </math> , <math> <semantics><mrow><mi>l</mi> <mi>o</mi> <mi>g</mi> <mi>A</mi></mrow> <annotation>${{\\rm l}{\\rm o}{\\rm g}A}$</annotation> </semantics> </math> and <math> <semantics><msub><mi>E</mi> <mi>a</mi></msub> <annotation>${{E}_{{\\rm a}}}$</annotation> </semantics> </math> were treated cooperatively. An equation-based model assessed <math> <semantics><mrow><mi>l</mi> <mi>o</mi> <mi>g</mi> <mi>k</mi></mrow> <annotation>${{\\rm l}{\\rm o}{\\rm g}k}$</annotation> </semantics> </math> using the Arrhenius equation and <math> <semantics><mrow><mi>l</mi> <mi>o</mi> <mi>g</mi> <mi>A</mi></mrow> <annotation>${{\\rm l}{\\rm o}{\\rm g}A}$</annotation> </semantics> </math> and <math> <semantics><msub><mi>E</mi> <mi>a</mi></msub> <annotation>${{E}_{{\\rm a}}}$</annotation> </semantics> </math> values predicted by individual models. It has been demonstrated that the conjugated QSPR models can accurately predict the reaction rate constants at extreme temperatures, at which reaction rate constants hardly can be measured experimentally. Also, in the case of small training sets conjugated models are more robust than related single-task approaches.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e2200275"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202200275","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugated QSPR models for reactions integrate fundamental chemical laws expressed by mathematical equations with machine learning algorithms. Herein we present a methodology for building conjugated QSPR models integrated with the Arrhenius equation. Conjugated QSPR models were used to predict kinetic characteristics of cycloaddition reactions related by the Arrhenius equation: rate constant l o g k ${{\rm l}{\rm o}{\rm g}k}$ , pre-exponential factor l o g A ${{\rm l}{\rm o}{\rm g}A}$ , and activation energy E a ${{E}_{{\rm a}}}$ . They were benchmarked against single-task (individual and equation-based models) and multi-task models. In individual models, all characteristics were modeled separately, while in multi-task models l o g k ${{\rm l}{\rm o}{\rm g}k}$ , l o g A ${{\rm l}{\rm o}{\rm g}A}$ and E a ${{E}_{{\rm a}}}$ were treated cooperatively. An equation-based model assessed l o g k ${{\rm l}{\rm o}{\rm g}k}$ using the Arrhenius equation and l o g A ${{\rm l}{\rm o}{\rm g}A}$ and E a ${{E}_{{\rm a}}}$ values predicted by individual models. It has been demonstrated that the conjugated QSPR models can accurately predict the reaction rate constants at extreme temperatures, at which reaction rate constants hardly can be measured experimentally. Also, in the case of small training sets conjugated models are more robust than related single-task approaches.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共轭定量结构-性质关系模型:由阿伦尼斯方程联系的动力学特性预测。
反应的共轭QSPR模型将数学方程表达的基本化学定律与机器学习算法相结合。在此,我们提出了一种结合阿伦尼斯方程建立共轭QSPR模型的方法。共轭QSPR模型用于预测与Arrhenius方程相关的环加成反应的动力学特性:速率常数l o g k${\rm l}{\rmo}{{\RMg}k}$、指数前因子l o g A${\ rml}和活化能E A${{E}_{{\rm a}}$。它们以单任务(基于个体和方程的模型)和多任务模型为基准。在单独的模型中,所有特征都是单独建模的,而在多任务模型中,l o g k${\rm l}${{E}_{\rma}}$得到了合作处理。一个基于方程的模型使用Arrhenius方程和l o g A${\rm l}{\rm o}A}$和E${{E}_{{\rma}}}}$由各个模型预测的值。研究表明,共轭QSPR模型可以准确预测极端温度下的反应速率常数,而在极端温度下几乎无法通过实验测量反应速率常数。此外,在小训练集的情况下,共轭模型比相关的单任务方法更稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Extended Activity Cliffs-Driven Approaches on Data Splitting for the Study of Bioactivity Machine Learning Predictions. BIOMX-DB: A web application for the BIOFACQUIM natural product database. Chemoinformatics for corrosion science: Data-driven modeling of corrosion inhibition by organic molecules. My 50 Years with Chemoinformatics. Pathway-based prediction of the therapeutic effects and mode of action of custom-made multiherbal medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1