Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions.

IF 29.9 1区 医学 Q1 PHYSIOLOGY Physiological reviews Pub Date : 2023-10-01 Epub Date: 2023-06-29 DOI:10.1152/physrev.00039.2022
Michael D Roberts, John J McCarthy, Troy A Hornberger, Stuart M Phillips, Abigail L Mackey, Gustavo A Nader, Marni D Boppart, Andreas N Kavazis, Paul T Reidy, Riki Ogasawara, Cleiton A Libardi, Carlos Ugrinowitsch, Frank W Booth, Karyn A Esser
{"title":"Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions.","authors":"Michael D Roberts, John J McCarthy, Troy A Hornberger, Stuart M Phillips, Abigail L Mackey, Gustavo A Nader, Marni D Boppart, Andreas N Kavazis, Paul T Reidy, Riki Ogasawara, Cleiton A Libardi, Carlos Ugrinowitsch, Frank W Booth, Karyn A Esser","doi":"10.1152/physrev.00039.2022","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of \"work-induced hypertrophy\" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":null,"pages":null},"PeriodicalIF":29.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00039.2022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机械超负荷诱导骨骼肌肥大的机制:目前的理解和未来的方向。
自从Morpurgo(1897)发表了一篇里程碑式的关于在跑步机训练的狗中“工作诱导的肥大”的报告以来,机械过载诱导的骨骼肌肥大的潜在机制已经得到了广泛的研究。迄今为止,许多临床前啮齿类动物和人类抵抗训练研究都支持这一相关机制,包括增强哺乳动物/雷帕霉素复合物1(mTORC1)的机制靶点信号传导,通过核糖体生物发生扩大翻译能力,增加卫星细胞丰度和肌核增生,以及运动后肌肉蛋白质合成率的提高。然而,过去和新出现的几条证据表明,还涉及为这些过程提供信息或独立于这些过程的其他机制。这篇综述首先提供了骨骼肌肥大机制研究进展的历史记录。然后概述了与骨骼肌肥大相关的机制的综合列表,并提出了涉及这些机制的分歧领域。最后,提出了涉及所讨论的许多机制的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological reviews
Physiological reviews 医学-生理学
CiteScore
56.50
自引率
0.90%
发文量
53
期刊介绍: Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.
期刊最新文献
Multiscale structure and function of the aortic valve apparatus. Understanding coenzyme Q. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. REDOX SIGNALLING IN THE PANCREAS IN HEALTH AND DISEASE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1