Pub Date : 2025-04-01Epub Date: 2024-08-08DOI: 10.1152/physrev.00013.2024
Manuela Zaccolo, Duangnapa Kovanich
The 3',5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signaling pathway with a specific focus on adenylyl cyclases, A-kinase anchoring proteins, and phosphodiesterases. We discuss how they are organized inside the intracellular space and how they achieve exquisite regulation of signaling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalized cAMP signaling, and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
{"title":"Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions.","authors":"Manuela Zaccolo, Duangnapa Kovanich","doi":"10.1152/physrev.00013.2024","DOIUrl":"10.1152/physrev.00013.2024","url":null,"abstract":"<p><p>The 3',5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signaling pathway with a specific focus on adenylyl cyclases, A-kinase anchoring proteins, and phosphodiesterases. We discuss how they are organized inside the intracellular space and how they achieve exquisite regulation of signaling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalized cAMP signaling, and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"541-591"},"PeriodicalIF":29.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.1152/physrev.00021.2024
Markus Gerber, Boris Cheval, Robyn Cody, Flora Colledge, Vivien Hohberg, Yann C. Klimentidis, Christin Lang, Vera Nina Looser, Sebastian Ludyga, Matthew Stults-Kolehmainen, Oliver Faude
Physiological Reviews, Ahead of Print.
{"title":"Psycho-physiological foundations of human physical activity behavior and motivation: Theories, systems, mechanisms, evolution, and genetics","authors":"Markus Gerber, Boris Cheval, Robyn Cody, Flora Colledge, Vivien Hohberg, Yann C. Klimentidis, Christin Lang, Vera Nina Looser, Sebastian Ludyga, Matthew Stults-Kolehmainen, Oliver Faude","doi":"10.1152/physrev.00021.2024","DOIUrl":"https://doi.org/10.1152/physrev.00021.2024","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"1 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-18DOI: 10.1152/physrev.00002.2024
Barry E Levin, Nori Geary, Thomas A Lutz
Physiological Reviews, Ahead of Print.
《生理评论》,出版前。
{"title":"The (dys)regulation of energy storage in obesity","authors":"Barry E Levin, Nori Geary, Thomas A Lutz","doi":"10.1152/physrev.00002.2024","DOIUrl":"https://doi.org/10.1152/physrev.00002.2024","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"9 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1152/physrev.00012.2024
Yuhua Tian, Jie Zheng
Physiological Reviews, Ahead of Print.
《生理评论》,出版前。
{"title":"The TRP Channels Serving as Chemical-to-Electrical Signal Converter","authors":"Yuhua Tian, Jie Zheng","doi":"10.1152/physrev.00012.2024","DOIUrl":"https://doi.org/10.1152/physrev.00012.2024","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"5 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1152/physrev.00015.2024
Kanyada Koysombat, Jovanna Tsoutsouki, Aaran H. Patel, Alexander N. Comninos, Waljit S. Dhillo, Ali Abbara
Physiological Reviews, Ahead of Print.
生理学评论》,提前出版。
{"title":"Kisspeptin and Neurokinin B: roles in reproductive health","authors":"Kanyada Koysombat, Jovanna Tsoutsouki, Aaran H. Patel, Alexander N. Comninos, Waljit S. Dhillo, Ali Abbara","doi":"10.1152/physrev.00015.2024","DOIUrl":"https://doi.org/10.1152/physrev.00015.2024","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"29 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-15DOI: 10.1152/physrev.00007.2024
David G Benditt, Artur Fedorowski, Richard Sutton, J Gert van Dijk
Syncope is a symptom in which transient loss of consciousness occurs as a consequence of a self-limited, spontaneously terminating period of cerebral hypoperfusion. Many circulatory disturbances (e.g. brady- or tachyarrhythmias, reflex cardioinhibition-vasodepression-hypotension) may trigger a syncope or near-syncope episode, and identifying the cause(s) is often challenging. Some syncope may involve multiple etiologies operating in concert, whereas in other cases multiple syncope events may be due to various differing causes at different times. In this communication, we address the current understanding of the principal contributors to syncope pathophysiology including examination of the manner in which concepts evolved, an overview of factors that constitute consciousness and loss of consciousness, and aspects of neurovascular control and communication that are impacted by cerebral hypoperfusion leading to syncope. Emphasis focuses on 1) current understanding of the way transient systemic hypotension impacts brain blood flow and brain function; 2) the complexity and temporal sequence of vascular, humoral, and cardiac factors that may accompany the most common causes of syncope; 3) the range of circumstances and disease states that may lead to syncope; and 4) clinical features associated with syncope and in particular the reflex syncope syndromes.
{"title":"Pathophysiology of syncope: current concepts and their development.","authors":"David G Benditt, Artur Fedorowski, Richard Sutton, J Gert van Dijk","doi":"10.1152/physrev.00007.2024","DOIUrl":"10.1152/physrev.00007.2024","url":null,"abstract":"<p><p>Syncope is a symptom in which transient loss of consciousness occurs as a consequence of a self-limited, spontaneously terminating period of cerebral hypoperfusion. Many circulatory disturbances (e.g. brady- or tachyarrhythmias, reflex cardioinhibition-vasodepression-hypotension) may trigger a syncope or near-syncope episode, and identifying the cause(s) is often challenging. Some syncope may involve multiple etiologies operating in concert, whereas in other cases multiple syncope events may be due to various differing causes at different times. In this communication, we address the current understanding of the principal contributors to syncope pathophysiology including examination of the manner in which concepts evolved, an overview of factors that constitute consciousness and loss of consciousness, and aspects of neurovascular control and communication that are impacted by cerebral hypoperfusion leading to syncope. Emphasis focuses on <i>1</i>) current understanding of the way transient systemic hypotension impacts brain blood flow and brain function; <i>2</i>) the complexity and temporal sequence of vascular, humoral, and cardiac factors that may accompany the most common causes of syncope; <i>3</i>) the range of circumstances and disease states that may lead to syncope; and <i>4</i>) clinical features associated with syncope and in particular the reflex syncope syndromes.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"209-266"},"PeriodicalIF":29.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-03-07DOI: 10.1152/physrev.00014.2023
Dilson E Rassier, Alf Månsson
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
肌球蛋白 II 是一种分子马达,可将 ATP 水解产生的化学能转化为机械功。肌球蛋白 II 同工型负责肌肉收缩以及一系列依赖于力量和运动发展的细胞功能。当马达附着到肌动蛋白上时,ATP 会发生水解,无机磷酸(Pi)和 ADP 会从其活性位点释放出来。这些反应与肌球蛋白结构的变化相协调,促进了所谓的 "动力冲程",导致肌动蛋白丝滑动。肌球蛋白-肌动蛋白相互作用的一般特征已被广泛接受,但主要由于技术限制,人们对一些关键问题仍然知之甚少。近年来,结构、生物化学和机械方法有了长足的进步,大大推进了这一领域的研究。新的建模方法也使研究人员能够从不同的分析层面了解肌动蛋白的相互作用。本文回顾了最近对肌球蛋白 II 和肌动蛋白丝之间相互作用的研究,这种相互作用导致了动力冲程和力量的产生。它回顾了针对单个肌球蛋白分子、肌球蛋白在肌丝、肌肉肌节、肌原纤维和纤维中的作用所进行的研究。它还回顾了用于理解肌球蛋白 II 力学的数学模型,其方法侧重于单个分子到集合体。最后,书中还简要介绍了转化方面的内容,以及肌球蛋白马达因突变和/或翻译后修饰而发生的变化如何在疾病和衰老等情况下造成有害影响,以及肌球蛋白II如何成为新兴的药物靶点。
{"title":"Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches.","authors":"Dilson E Rassier, Alf Månsson","doi":"10.1152/physrev.00014.2023","DOIUrl":"10.1152/physrev.00014.2023","url":null,"abstract":"<p><p>Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (P<sub>i</sub>) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called \"power stroke\" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1-93"},"PeriodicalIF":29.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-25DOI: 10.1152/physrev.00017.2024
Torsten Schöneberg
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
{"title":"Modulating vertebrate physiology by genomic fine-tuning of GPCR functions.","authors":"Torsten Schöneberg","doi":"10.1152/physrev.00017.2024","DOIUrl":"10.1152/physrev.00017.2024","url":null,"abstract":"<p><p>G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"383-439"},"PeriodicalIF":29.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-11DOI: 10.1152/physrev.00004.2024
Salvatore Incontro, Maria Laura Musella, Malika Sammari, Coralie Di Scala, Jacques Fantini, Dominique Debanne
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
{"title":"Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives.","authors":"Salvatore Incontro, Maria Laura Musella, Malika Sammari, Coralie Di Scala, Jacques Fantini, Dominique Debanne","doi":"10.1152/physrev.00004.2024","DOIUrl":"10.1152/physrev.00004.2024","url":null,"abstract":"<p><p>Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"137-207"},"PeriodicalIF":29.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}