Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing.

IF 29.9 1区 医学 Q1 PHYSIOLOGY Physiological reviews Pub Date : 2024-04-01 Epub Date: 2023-08-17 DOI:10.1152/physrev.00009.2023
Stéphanie Barrère-Lemaire, Anne Vincent, Christian Jorgensen, Christophe Piot, Joël Nargeot, Farida Djouad
{"title":"Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing.","authors":"Stéphanie Barrère-Lemaire, Anne Vincent, Christian Jorgensen, Christophe Piot, Joël Nargeot, Farida Djouad","doi":"10.1152/physrev.00009.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"659-725"},"PeriodicalIF":29.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00009.2023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间充质基质细胞用于改善急性心肌梗死后的心脏功能:时机问题。
急性心肌梗死(AMI)是心血管疾病死亡的主要原因,也是心力衰竭最常见的原因。重新开放闭塞的动脉,即再灌注,是挽救心肌的唯一方法。然而,由于再灌注悖论也会诱发特异性细胞死亡,缩小梗死面积的预期效果令人失望。这些缺血再灌注(I/R)病变可占最终梗死面积的 50%,是死亡率和心力衰竭风险(发病率)的主要决定因素。在这篇综述中,我们将详细介绍作为 I/R 损伤特征的细胞死亡和炎症机制,以及缺血后处理等心脏保护策略及其内在机制。由于间充质基质/干细胞(MSCs)的生物特性,其使用被认为是急性心肌梗死的一种潜在治疗方法。尽管在使用间充质干细胞的临床前研究中取得了令人鼓舞的结果和安全性证据,但临床试验中报告的效果并不确定,甚至不一致。这些差异归因于许多参数,如供体年龄、体外培养和储存时间以及急性髓损伤后的注射时间窗,这些都会改变间充质干细胞的治疗特性。就急性心肌梗死而言,未来的方向将是产生具有更强特性的间充质干细胞,以限制心肌组织中的细胞死亡,从而缩小梗死面积,并改善愈合阶段以提高梗死后心肌的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological reviews
Physiological reviews 医学-生理学
CiteScore
56.50
自引率
0.90%
发文量
53
期刊介绍: Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.
期刊最新文献
Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. The calculating brain. Pathophysiology of syncope: current concepts and their development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1