Natalia Moreno-Castellanos, Elías Cuartas-Gómez, Oscar Vargas-Ceballos
{"title":"Collagen microgel to simulate the adipocyte microenvironment for in vitro research on obesity.","authors":"Natalia Moreno-Castellanos, Elías Cuartas-Gómez, Oscar Vargas-Ceballos","doi":"10.1093/intbio/zyad011","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is linked to adipose tissue dysfunction, a dynamic endocrine organ. Two-dimensional cultures present technical hurdles hampering their ability to follow individual or cell groups for metabolic disease research. Three-dimensional type I collagen microgels with embedded adipocytes have not been thoroughly investigated to evaluate adipogenic maintenance as instrument for studying metabolic disorders. We aimed to develop a novel tunable Col-I microgel simulating the adipocyte microenvironment to maintain differentiated cells with only insulin as in vitro model for obesity research. Adipocytes were cultured and encapsulated in collagen microgels at different concentrations (2, 3 and 4 mg/mL). Collagen microgels at 3 and 4 mg/mL were more stable after 8 days of culture. However, cell viability and metabolic activity were maintained at 2 and 3 mg/mL, respectively. Cell morphology, lipid mobilization and adipogenic gene expression demonstrated the maintenance of adipocyte phenotype in an in vitro microenvironment. We demonstrated the adequate stability and biocompatibility of the collagen microgel at 3 mg/mL. Cell and molecular analysis confirmed that adipocyte phenotype is maintained over time in the absence of adipogenic factors. These findings will help better understand and open new avenues for research on adipocyte metabolism and obesity. Insight box In the context of adipose tissue dysfunction research, new struggles have arisen owing to the difficulty of cellular maintenance in 2D cultures. Herein, we sought a novel approach using a 3D type I collagen-based biomaterial to adipocyte culture with only insulin. This component was tailored as a microgel in different concentrations to support the growth and survival of adipocytes. We demonstrate that adipocyte phenotype is maintained and key adipogenesis regulators and markers are over time. The cumulative results unveil the practical advantage of this microgel platform as an in vitro model to study adipocyte dysfunction and obesity.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"15 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyad011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is linked to adipose tissue dysfunction, a dynamic endocrine organ. Two-dimensional cultures present technical hurdles hampering their ability to follow individual or cell groups for metabolic disease research. Three-dimensional type I collagen microgels with embedded adipocytes have not been thoroughly investigated to evaluate adipogenic maintenance as instrument for studying metabolic disorders. We aimed to develop a novel tunable Col-I microgel simulating the adipocyte microenvironment to maintain differentiated cells with only insulin as in vitro model for obesity research. Adipocytes were cultured and encapsulated in collagen microgels at different concentrations (2, 3 and 4 mg/mL). Collagen microgels at 3 and 4 mg/mL were more stable after 8 days of culture. However, cell viability and metabolic activity were maintained at 2 and 3 mg/mL, respectively. Cell morphology, lipid mobilization and adipogenic gene expression demonstrated the maintenance of adipocyte phenotype in an in vitro microenvironment. We demonstrated the adequate stability and biocompatibility of the collagen microgel at 3 mg/mL. Cell and molecular analysis confirmed that adipocyte phenotype is maintained over time in the absence of adipogenic factors. These findings will help better understand and open new avenues for research on adipocyte metabolism and obesity. Insight box In the context of adipose tissue dysfunction research, new struggles have arisen owing to the difficulty of cellular maintenance in 2D cultures. Herein, we sought a novel approach using a 3D type I collagen-based biomaterial to adipocyte culture with only insulin. This component was tailored as a microgel in different concentrations to support the growth and survival of adipocytes. We demonstrate that adipocyte phenotype is maintained and key adipogenesis regulators and markers are over time. The cumulative results unveil the practical advantage of this microgel platform as an in vitro model to study adipocyte dysfunction and obesity.
期刊介绍:
Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems.
Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity.
Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.