首页 > 最新文献

Integrative Biology最新文献

英文 中文
Role of RGD-binding Integrins in ovarian cancer progression, metastasis and response to therapy.
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-01-08 DOI: 10.1093/intbio/zyaf003
Vipin Ranga, Tikam Chand Dakal, Pawan Kumar Maurya, Mark S Johnson, Narendra Kumar Sharma, Abhishek Kumar

Integrins are transmembrane receptors that play a crucial role in cell adhesion and signaling by connecting the extracellular environment to the intracellular cytoskeleton. After binding with specific ligands in the extracellular matrix (ECM), integrins undergo conformational changes that transmit signals across the cell membrane. The integrin-mediated bidirectional signaling triggers various cellular responses, such as changes in cell shape, migration and proliferation. Irregular integrin expression and activity are closely linked to tumor initiation, angiogenesis, cell motility, invasion, and metastasis. Thus, understanding the intricate regulatory mechanism is essential for slowing cancer progression and preventing carcinogenesis. Among the four classes of integrins, the arginine-glycine-aspartic acid (RGD)-binding integrins stand out as the most crucial integrin receptor subfamily in cancer and its metastasis. Dysregulation of almost all RGD-binding integrins promotes ECM degradation in ovarian cancer, resulting in ovarian carcinoma progression and resistance to therapy. Preclinical studies have demonstrated that targeting these integrins with therapeutic antibodies and ligands, such as RGD-containing peptides and their derivatives, can enhance the precision of these therapeutic agents in treating ovarian cancer. Therefore, the development of novel therapeutic agents is essential for treating ovarian cancer. This review mainly discusses genes and their importance across different ovarian cancer subtypes, the involvement of RGD motif-containing ECM proteins in integrin-mediated signaling in ovarian carcinoma, ongoing, completed, partially completed, and unsuccessful clinical trials of therapeutic agents, as well as existing limitations and challenges, advancements made so far, potential strategies, and directions for future research in the field. Insight Box Integrin-mediated signaling regulates cell migration, proliferation and differentiation. Dysregulated integrin expression and activity promote tumor growth and dissemination. Thus, a proper understanding of this complex regulatory mechanism is essential to delay cancer progression and prevent carcinogenesis. Notably, integrins binding to RGD motifs play an important role in tumor initiation, evolution, and metastasis. Preclinical studies have demonstrated that therapeutic agents, such as antibodies and small molecules with RGD motifs, target RGD-binding integrins and disrupt their interactions with the ECM, thereby inhibiting ovarian cancer proliferation and migration. Altogether, this review highlights the potential of RGD-binding integrins in providing new insights into the progression and metastasis of ovarian cancer and how these integrins have been utilized to develop effective treatment plans.

{"title":"Role of RGD-binding Integrins in ovarian cancer progression, metastasis and response to therapy.","authors":"Vipin Ranga, Tikam Chand Dakal, Pawan Kumar Maurya, Mark S Johnson, Narendra Kumar Sharma, Abhishek Kumar","doi":"10.1093/intbio/zyaf003","DOIUrl":"https://doi.org/10.1093/intbio/zyaf003","url":null,"abstract":"<p><p>Integrins are transmembrane receptors that play a crucial role in cell adhesion and signaling by connecting the extracellular environment to the intracellular cytoskeleton. After binding with specific ligands in the extracellular matrix (ECM), integrins undergo conformational changes that transmit signals across the cell membrane. The integrin-mediated bidirectional signaling triggers various cellular responses, such as changes in cell shape, migration and proliferation. Irregular integrin expression and activity are closely linked to tumor initiation, angiogenesis, cell motility, invasion, and metastasis. Thus, understanding the intricate regulatory mechanism is essential for slowing cancer progression and preventing carcinogenesis. Among the four classes of integrins, the arginine-glycine-aspartic acid (RGD)-binding integrins stand out as the most crucial integrin receptor subfamily in cancer and its metastasis. Dysregulation of almost all RGD-binding integrins promotes ECM degradation in ovarian cancer, resulting in ovarian carcinoma progression and resistance to therapy. Preclinical studies have demonstrated that targeting these integrins with therapeutic antibodies and ligands, such as RGD-containing peptides and their derivatives, can enhance the precision of these therapeutic agents in treating ovarian cancer. Therefore, the development of novel therapeutic agents is essential for treating ovarian cancer. This review mainly discusses genes and their importance across different ovarian cancer subtypes, the involvement of RGD motif-containing ECM proteins in integrin-mediated signaling in ovarian carcinoma, ongoing, completed, partially completed, and unsuccessful clinical trials of therapeutic agents, as well as existing limitations and challenges, advancements made so far, potential strategies, and directions for future research in the field. Insight Box Integrin-mediated signaling regulates cell migration, proliferation and differentiation. Dysregulated integrin expression and activity promote tumor growth and dissemination. Thus, a proper understanding of this complex regulatory mechanism is essential to delay cancer progression and prevent carcinogenesis. Notably, integrins binding to RGD motifs play an important role in tumor initiation, evolution, and metastasis. Preclinical studies have demonstrated that therapeutic agents, such as antibodies and small molecules with RGD motifs, target RGD-binding integrins and disrupt their interactions with the ECM, thereby inhibiting ovarian cancer proliferation and migration. Altogether, this review highlights the potential of RGD-binding integrins in providing new insights into the progression and metastasis of ovarian cancer and how these integrins have been utilized to develop effective treatment plans.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"17 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GTF2I acts as a novel tumor suppressor transcription factor and shows Favorable prognosis in renal cancer. GTF2I是一种新型的肿瘤抑制转录因子,在肾癌中具有良好的预后。
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-01-08 DOI: 10.1093/intbio/zyaf001
Tikam Chand Dakal, Mony Thakur, Nancy George, Tiratha Raj Singh, Vinod Yadav, Abhishek Kumar

The role of GTF2I (General Transcription Factor2I) alteration has already been reported in thymic cancer as a valuable biomarker. However, the association of GTF2I mutation with renal cancer for prognosis of immunotherapy is not yet examined. The biologic and oncologic significance of GTF2I in renal cancer was examined at multiomics level such as mutation, copy number alteration, structural variants. The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA) were used to retrieve the omics data. The expression of GTF2I mRNA was quite significant in case of renal caner. Correlation among the GTF2I mRNA, mutation, CNA and structural variants was also studied. Interactome of GTF2I was also constructed using STRING database. Gain, amplification, and missense mutation exhibited a positive correlation between GTF2I mRNA expression and non-structural variants. Similarly, GTF2I mRNA expression and copy number alterations from GISTIC were positively correlated. High expression of GTF2I was associated with better overall survival indicating the less aggressive clinical features. Insight Box Investigating GTF2I's complex function as a tumor suppressor transcription factor in renal carcinoma provides fresh insights into its biologic and oncologic importance, especially when considering the prognosis of immunotherapy. Little is known about its possible use as a biomarker for renal cancer. Using a multiomics approach and utilizing information from the Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA), our study clarifies the intricate relationship between mRNA expression, GTF2I changes, and clinical outcomes in renal cancer. Our results indicate that GTF2I expression may be used as a prognostic indicator because it is positively correlated with favorable survival outcomes. Furthermore, the molecular interactions behind GTF2I's functional significance in renal cancer are revealed by interactome analysis utilizing the STRING database, providing important information for further study and treatment approaches.

GTF2I(一般转录因子2i)改变在胸腺癌中的作用已经被报道为一种有价值的生物标志物。然而,GTF2I突变与肾癌免疫治疗预后的关系尚未得到研究。从基因突变、拷贝数改变、结构变异等多组学水平探讨GTF2I在肾癌中的生物学和肿瘤学意义。使用癌症基因组图谱(TCGA)、人类蛋白质图谱(HPA)检索组学数据。GTF2I mRNA在肾癌中的表达非常显著。研究了GTF2I mRNA、突变、CNA和结构变异之间的相关性。利用STRING数据库构建了GTF2I的交互组。增益、扩增和错义突变与GTF2I mRNA表达与非结构性变异呈正相关。同样,GTF2I mRNA的表达与GISTIC的拷贝数变化呈正相关。GTF2I的高表达与较好的总生存率相关,表明临床特征较少侵袭性。研究肾癌中GTF2I复合物作为肿瘤抑制转录因子的功能,为其生物学和肿瘤学重要性提供了新的见解,特别是在考虑免疫治疗的预后时。对于其作为肾癌生物标志物的可能用途知之甚少。采用多组学方法,利用人类蛋白质图谱(HPA)和癌症基因组图谱(TCGA)的信息,我们的研究阐明了肾癌mRNA表达、GTF2I变化与临床结局之间的复杂关系。我们的研究结果表明,GTF2I表达可作为预后指标,因为它与有利的生存结果呈正相关。此外,利用STRING数据库的相互作用组分析揭示了GTF2I在肾癌中功能意义背后的分子相互作用,为进一步研究和治疗方法提供了重要信息。
{"title":"GTF2I acts as a novel tumor suppressor transcription factor and shows Favorable prognosis in renal cancer.","authors":"Tikam Chand Dakal, Mony Thakur, Nancy George, Tiratha Raj Singh, Vinod Yadav, Abhishek Kumar","doi":"10.1093/intbio/zyaf001","DOIUrl":"https://doi.org/10.1093/intbio/zyaf001","url":null,"abstract":"<p><p>The role of GTF2I (General Transcription Factor2I) alteration has already been reported in thymic cancer as a valuable biomarker. However, the association of GTF2I mutation with renal cancer for prognosis of immunotherapy is not yet examined. The biologic and oncologic significance of GTF2I in renal cancer was examined at multiomics level such as mutation, copy number alteration, structural variants. The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA) were used to retrieve the omics data. The expression of GTF2I mRNA was quite significant in case of renal caner. Correlation among the GTF2I mRNA, mutation, CNA and structural variants was also studied. Interactome of GTF2I was also constructed using STRING database. Gain, amplification, and missense mutation exhibited a positive correlation between GTF2I mRNA expression and non-structural variants. Similarly, GTF2I mRNA expression and copy number alterations from GISTIC were positively correlated. High expression of GTF2I was associated with better overall survival indicating the less aggressive clinical features. Insight Box Investigating GTF2I's complex function as a tumor suppressor transcription factor in renal carcinoma provides fresh insights into its biologic and oncologic importance, especially when considering the prognosis of immunotherapy. Little is known about its possible use as a biomarker for renal cancer. Using a multiomics approach and utilizing information from the Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA), our study clarifies the intricate relationship between mRNA expression, GTF2I changes, and clinical outcomes in renal cancer. Our results indicate that GTF2I expression may be used as a prognostic indicator because it is positively correlated with favorable survival outcomes. Furthermore, the molecular interactions behind GTF2I's functional significance in renal cancer are revealed by interactome analysis utilizing the STRING database, providing important information for further study and treatment approaches.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"17 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of cytokines-cytokine receptor-associated genes in childhood asthma based on bioinformatics.
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-01-08 DOI: 10.1093/intbio/zyaf002
Caiwen Wang, Zhimei Liu, Xiaoting Ren, Yiquan Li, Liping Sun

Purpose: To develop efficient diagnostic and treatment approaches, gaining an in-depth knowledge of the molecular mechanisms and potential targets causing childhood asthma is of utmost significance.

Methods: Childhood asthma datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between asthmatic child and healthy people were screened by the Limma package. DEGs were subjected to further analyses utilizing GO, KEGG and GSEA analysis. The hub genes associated with childhood asthma were discovered by PPI analysis. The drugs target hub genes were accessed from the DrugBank database. Autodock vina was used to explore the binding ability of targeted drugs to hub genes.

Results: Total 80 DEGs were selected from GSE152004 and GSE65204 datasets. The cytokine-cytokine receptor interaction was the key pathway identified by functional enrichment analysis of shared DEGs. A total of 4 hub genes (CCL26, CXCR6, IL18RAP and CCL20) were identified by the constructed PPI network, among which CXCR6, IL18RAP and CCL20 were significantly decreased in childhood asthma datasets. Whereas, the CCL26 was significantly increased in childhood asthma datasets. Additionally, the extra dataset GSE19187 and GSE240567 were employed for validation. Ultimately, drugs (Cimetidine, Cefaclor and Propofol) that target hub genes have favorable combination ability.

Conclusions: We have determined that CCL26, CXCR6, IL18RAP and CCL20 might have crucial involvement in the advancement of childhood asthma, thus having the potential to be targeted therapeutically in order to enhance treatment choices for childhood asthma. Statement of Integration, Innovation and Insight: The cytokine-cytokine receptor interaction is a key pathway in the occurrence of childhood asthma. The hub genes (CCL26, CXCR6, IL18RAP and CCL20) affect the development of childhood asthma. The drugs (Cimetidine, Cefaclor and Propofol) that target hub genes have favorable combination ability.

{"title":"Screening of cytokines-cytokine receptor-associated genes in childhood asthma based on bioinformatics.","authors":"Caiwen Wang, Zhimei Liu, Xiaoting Ren, Yiquan Li, Liping Sun","doi":"10.1093/intbio/zyaf002","DOIUrl":"https://doi.org/10.1093/intbio/zyaf002","url":null,"abstract":"<p><strong>Purpose: </strong>To develop efficient diagnostic and treatment approaches, gaining an in-depth knowledge of the molecular mechanisms and potential targets causing childhood asthma is of utmost significance.</p><p><strong>Methods: </strong>Childhood asthma datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between asthmatic child and healthy people were screened by the Limma package. DEGs were subjected to further analyses utilizing GO, KEGG and GSEA analysis. The hub genes associated with childhood asthma were discovered by PPI analysis. The drugs target hub genes were accessed from the DrugBank database. Autodock vina was used to explore the binding ability of targeted drugs to hub genes.</p><p><strong>Results: </strong>Total 80 DEGs were selected from GSE152004 and GSE65204 datasets. The cytokine-cytokine receptor interaction was the key pathway identified by functional enrichment analysis of shared DEGs. A total of 4 hub genes (CCL26, CXCR6, IL18RAP and CCL20) were identified by the constructed PPI network, among which CXCR6, IL18RAP and CCL20 were significantly decreased in childhood asthma datasets. Whereas, the CCL26 was significantly increased in childhood asthma datasets. Additionally, the extra dataset GSE19187 and GSE240567 were employed for validation. Ultimately, drugs (Cimetidine, Cefaclor and Propofol) that target hub genes have favorable combination ability.</p><p><strong>Conclusions: </strong>We have determined that CCL26, CXCR6, IL18RAP and CCL20 might have crucial involvement in the advancement of childhood asthma, thus having the potential to be targeted therapeutically in order to enhance treatment choices for childhood asthma. Statement of Integration, Innovation and Insight: The cytokine-cytokine receptor interaction is a key pathway in the occurrence of childhood asthma. The hub genes (CCL26, CXCR6, IL18RAP and CCL20) affect the development of childhood asthma. The drugs (Cimetidine, Cefaclor and Propofol) that target hub genes have favorable combination ability.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"17 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of CXCR4 inhibitory activity in natural compounds using cheminformatics-guided machine learning algorithms.
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2025-01-08 DOI: 10.1093/intbio/zyaf004
Rahul Tripathi, Pravir Kumar

Neurodegenerative disorders are characterised by progressive damage to neurons that leads to cognitive impairment and motor dysfunction. Current treatment options focus only on symptom management and palliative care, without addressing their root cause. In our previous study, we reported the upregulation of the CXC motif chemokine receptor 4 (CXCR4), in Alzheimer's disease (ad) and Parkinson's disease (PD). We reached this conclusion by analysing gene expression patterns of ad and PD patients, compared to healthy individuals of similar age. We used RNA sequencing data from Gene Expression Omnibus to carry out this analysis. Herein, we aim to identify natural compounds that have potential inhibitory activity against CXCR4 through cheminformatics-guided machine learning, to aid drug discovery for neurodegenerative disorders, especially ad and PD. Natural compounds are gaining prominence in the treatment of neurodegenerative disorders due to their biocompatibility and potential neuroprotective properties, including their ability to modulate CXCR4 expression. Recent advances in artificial intelligence (AI) and machine learning (ML) algorithms have opened new avenues for drug discovery research across various therapeutic areas, including neurodegenerative disorders. We aim to produce an ML model using cheminformatics-guided machine learning algorithms using data of compounds with known CXCR4 activity, retrieved from the Binding Database, to analyse various physicochemical attributes of natural compounds obtained from the COCONUT Database and predict their inhibitory activity against CXCR4. Insight Box This work extends our previous study published in Integrative Biology (DOI: 10.1093/intbio/zyad012). We aim to demonstrate the effectiveness of AI and ML in identifying potential treatment options for Alzheimer's and Parkinson's diseases. By analysing vast amounts of data and identifying patterns that may not be apparent to human researchers, AI-powered systems can provide valuable insight into potential treatment options that may have been overlooked through traditional research methods. Our study underscores the significance of interdisciplinary collaboration between computational and experimental scientists in drug discovery and in developing a robust pipeline to identify potential leads for drug development.

{"title":"Identification of CXCR4 inhibitory activity in natural compounds using cheminformatics-guided machine learning algorithms.","authors":"Rahul Tripathi, Pravir Kumar","doi":"10.1093/intbio/zyaf004","DOIUrl":"https://doi.org/10.1093/intbio/zyaf004","url":null,"abstract":"<p><p>Neurodegenerative disorders are characterised by progressive damage to neurons that leads to cognitive impairment and motor dysfunction. Current treatment options focus only on symptom management and palliative care, without addressing their root cause. In our previous study, we reported the upregulation of the CXC motif chemokine receptor 4 (CXCR4), in Alzheimer's disease (ad) and Parkinson's disease (PD). We reached this conclusion by analysing gene expression patterns of ad and PD patients, compared to healthy individuals of similar age. We used RNA sequencing data from Gene Expression Omnibus to carry out this analysis. Herein, we aim to identify natural compounds that have potential inhibitory activity against CXCR4 through cheminformatics-guided machine learning, to aid drug discovery for neurodegenerative disorders, especially ad and PD. Natural compounds are gaining prominence in the treatment of neurodegenerative disorders due to their biocompatibility and potential neuroprotective properties, including their ability to modulate CXCR4 expression. Recent advances in artificial intelligence (AI) and machine learning (ML) algorithms have opened new avenues for drug discovery research across various therapeutic areas, including neurodegenerative disorders. We aim to produce an ML model using cheminformatics-guided machine learning algorithms using data of compounds with known CXCR4 activity, retrieved from the Binding Database, to analyse various physicochemical attributes of natural compounds obtained from the COCONUT Database and predict their inhibitory activity against CXCR4. Insight Box This work extends our previous study published in Integrative Biology (DOI: 10.1093/intbio/zyad012). We aim to demonstrate the effectiveness of AI and ML in identifying potential treatment options for Alzheimer's and Parkinson's diseases. By analysing vast amounts of data and identifying patterns that may not be apparent to human researchers, AI-powered systems can provide valuable insight into potential treatment options that may have been overlooked through traditional research methods. Our study underscores the significance of interdisciplinary collaboration between computational and experimental scientists in drug discovery and in developing a robust pipeline to identify potential leads for drug development.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"17 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrative biology approach to understanding keratinocyte collective migration as stimulated by bioglass. 用综合生物学方法理解生物玻璃刺激的角质细胞集体迁移。
IF 2.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae008
Joseph Siegfreid, Ali Crampton, Saghi Saghazadeh, Randilynn Christensen, Jacob Notbohm, Jason Bjork, Bryan Baker

A critical phase of wound healing is the coordinated movement of keratinocytes. To this end, bioglasses show promise in speeding healing in hard tissues and skin wounds. Studies suggest that bioglass materials may promote wound healing by inducing positive cell responses in proliferation, growth factor production, expression of angiogenic factors, and migration. Precise details of how bioglass may stimulate migration are unclear, however, because the common assays for studying migration in wound healing focus on simplified outputs like rate of migration or total change in wound area. These outputs are limited in that they represent the average behavior of the collective, with no connection between the motion of the individual cells and the collective wound healing response. There is a need to apply more refined tools that identify how the motion of the individual cells changes in response to perturbations, such as by bioglass, and in turn affects motion of the cell collective. Here, we apply an integrative biology strategy that combines an in vitro wound healing assay using primary neonatal human keratinocytes with time lapse microscopy and quantitative image analysis. The resulting data set provides the cell velocity field, from which we define key metrics that describe cooperative migration phenotypes. Treatment with growth factors led to faster single-cell speeds compared to control, but the migration was not cooperative, with cells breaking away from their neighbors and migrating as individuals. Treatment with calcium or bioglass led to migration phenotypes that were highly collective, with greater coordination in space compared to control. We discuss the link between bioglass treatment and observed increases in free calcium ions that are hypothesized to promote these distinct coordinated behaviors in primary keratinocytes. These findings have been enabled by the unique descriptors developed through applying image analysis to interpret biological response in migration models. Insight Box/Paragraph Statement: Bioglasses are important materials for tissue engineering and have more recently shown promise in skin and wound healing by mechanisms tied to their unique ionic properties. The precise details, however, of how cell migration may be affected by bioglass are left unclear by traditional cell assay methods. The following describes the integration of migration assays of keratinocytes, cells critical for skin and wound healing, with the tools of time lapse microscopy and image analysis to generate a quantitative description of coordinated, tissue-like migration behavior, stimulated by bioglass, that would not have been accessible without the combination of these analytical tools.

伤口愈合的一个关键阶段是角质细胞的协调运动。为此,生物玻璃有望加速硬组织和皮肤伤口的愈合。研究表明,生物玻璃材料可通过诱导细胞在增殖、产生生长因子、表达血管生成因子和迁移方面的积极反应来促进伤口愈合。然而,生物玻璃如何刺激迁移的具体细节尚不清楚,因为研究伤口愈合中迁移的常用方法侧重于简化的输出,如迁移率或伤口面积的总变化。这些结果是有限的,因为它们代表的是集体的平均行为,单个细胞的运动与集体的伤口愈合反应之间没有联系。我们需要应用更精细的工具,以确定单个细胞的运动如何对生物玻璃等扰动做出反应,进而影响细胞集体的运动。在这里,我们采用了一种综合生物学策略,将使用原代新生人类角质细胞进行的体外伤口愈合试验与延时显微镜和定量图像分析相结合。由此产生的数据集提供了细胞速度场,我们据此定义了描述合作迁移表型的关键指标。与对照组相比,使用生长因子处理可使单细胞速度加快,但迁移并不合作,细胞会脱离邻近细胞,作为个体迁移。与对照组相比,用钙或生物玻璃处理会导致高度集体的迁移表型,在空间上有更大的协调性。我们讨论了生物玻璃处理与观察到的游离钙离子增加之间的联系,假设游离钙离子的增加促进了原代角质形成细胞中这些不同的协调行为。这些发现得益于通过应用图像分析来解释迁移模型中的生物反应而开发的独特描述符。洞察框/段落陈述:生物玻璃是组织工程学的重要材料,最近在皮肤和伤口愈合方面显示出与其独特离子特性相关的机制。然而,传统的细胞检测方法并不清楚生物玻璃如何影响细胞迁移的具体细节。下文介绍了如何将角质形成细胞(对皮肤和伤口愈合至关重要的细胞)的迁移测定与延时显微镜和图像分析工具相结合,从而对生物玻璃刺激下的协调组织样迁移行为进行定量描述。
{"title":"An integrative biology approach to understanding keratinocyte collective migration as stimulated by bioglass.","authors":"Joseph Siegfreid, Ali Crampton, Saghi Saghazadeh, Randilynn Christensen, Jacob Notbohm, Jason Bjork, Bryan Baker","doi":"10.1093/intbio/zyae008","DOIUrl":"10.1093/intbio/zyae008","url":null,"abstract":"<p><p>A critical phase of wound healing is the coordinated movement of keratinocytes. To this end, bioglasses show promise in speeding healing in hard tissues and skin wounds. Studies suggest that bioglass materials may promote wound healing by inducing positive cell responses in proliferation, growth factor production, expression of angiogenic factors, and migration. Precise details of how bioglass may stimulate migration are unclear, however, because the common assays for studying migration in wound healing focus on simplified outputs like rate of migration or total change in wound area. These outputs are limited in that they represent the average behavior of the collective, with no connection between the motion of the individual cells and the collective wound healing response. There is a need to apply more refined tools that identify how the motion of the individual cells changes in response to perturbations, such as by bioglass, and in turn affects motion of the cell collective. Here, we apply an integrative biology strategy that combines an in vitro wound healing assay using primary neonatal human keratinocytes with time lapse microscopy and quantitative image analysis. The resulting data set provides the cell velocity field, from which we define key metrics that describe cooperative migration phenotypes. Treatment with growth factors led to faster single-cell speeds compared to control, but the migration was not cooperative, with cells breaking away from their neighbors and migrating as individuals. Treatment with calcium or bioglass led to migration phenotypes that were highly collective, with greater coordination in space compared to control. We discuss the link between bioglass treatment and observed increases in free calcium ions that are hypothesized to promote these distinct coordinated behaviors in primary keratinocytes. These findings have been enabled by the unique descriptors developed through applying image analysis to interpret biological response in migration models. Insight Box/Paragraph Statement: Bioglasses are important materials for tissue engineering and have more recently shown promise in skin and wound healing by mechanisms tied to their unique ionic properties. The precise details, however, of how cell migration may be affected by bioglass are left unclear by traditional cell assay methods. The following describes the integration of migration assays of keratinocytes, cells critical for skin and wound healing, with the tools of time lapse microscopy and image analysis to generate a quantitative description of coordinated, tissue-like migration behavior, stimulated by bioglass, that would not have been accessible without the combination of these analytical tools.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140183220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical factors influence β-catenin localization and barrier properties. 机械因素影响β-catenin的定位和屏障特性。
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae013
Xi Wu, Nikola Cesarovic, Volkmar Falk, Edoardo Mazza, Costanza Giampietro

Mechanical forces are of major importance in regulating vascular homeostasis by influencing endothelial cell behavior and functions. Adherens junctions are critical sites for mechanotransduction in endothelial cells. β-catenin, a component of adherens junctions and the canonical Wnt signaling pathway, plays a role in mechanoactivation. Evidence suggests that β-catenin is involved in flow sensing and responds to tensional forces, impacting junction dynamics. The mechanoregulation of β-catenin signaling is context-dependent, influenced by the type and duration of mechanical loads. In endothelial cells, β-catenin's nuclear translocation and signaling are influenced by shear stress and strain, affecting endothelial permeability. The study investigates how shear stress, strain, and surface topography impact adherens junction dynamics, regulate β-catenin localization, and influence endothelial barrier properties. Insight box Mechanical loads are potent regulators of endothelial functions through not completely elucidated mechanisms. Surface topography, wall shear stress and cyclic wall deformation contribute overlapping mechanical stimuli to which endothelial monolayer respond to adapt and maintain barrier functions. The use of custom developed flow chamber and bioreactor allows quantifying the response of mature human endothelial to well-defined wall shear stress and gradients of strain. Here, the mechanoregulation of β-catenin by substrate topography, wall shear stress, and cyclic stretch is analyzed and linked to the monolayer control of endothelial permeability.

机械力通过影响内皮细胞的行为和功能,在调节血管稳态方面发挥着重要作用。粘连接头是内皮细胞机械传导的关键位置。β-catenin是粘连接头和典型Wnt信号通路的组成部分,在机械激活中发挥作用。有证据表明,β-catenin 参与流动感应并对张力做出反应,从而影响连接动态。β-catenin信号传导的机械调节依赖于环境,受机械负荷类型和持续时间的影响。在内皮细胞中,β-catenin 的核转位和信号传导受剪切应力和应变的影响,从而影响内皮细胞的通透性。该研究探讨了剪切应力、应变和表面形貌如何影响粘连接头动态、调控β-catenin定位以及影响内皮屏障特性。洞察框 机械负荷通过尚未完全阐明的机制对内皮功能起着强有力的调节作用。表面形貌、管壁剪切应力和周期性管壁变形会产生重叠的机械刺激,内皮单层会对这些刺激做出反应,以适应和维持屏障功能。使用定制开发的流室和生物反应器可以量化成熟的人类内皮对明确定义的壁剪应力和应变梯度的反应。本文分析了β-catenin受基底地形、壁剪切应力和循环拉伸的机械调节,并将其与内皮通透性的单层控制联系起来。
{"title":"Mechanical factors influence β-catenin localization and barrier properties.","authors":"Xi Wu, Nikola Cesarovic, Volkmar Falk, Edoardo Mazza, Costanza Giampietro","doi":"10.1093/intbio/zyae013","DOIUrl":"10.1093/intbio/zyae013","url":null,"abstract":"<p><p>Mechanical forces are of major importance in regulating vascular homeostasis by influencing endothelial cell behavior and functions. Adherens junctions are critical sites for mechanotransduction in endothelial cells. β-catenin, a component of adherens junctions and the canonical Wnt signaling pathway, plays a role in mechanoactivation. Evidence suggests that β-catenin is involved in flow sensing and responds to tensional forces, impacting junction dynamics. The mechanoregulation of β-catenin signaling is context-dependent, influenced by the type and duration of mechanical loads. In endothelial cells, β-catenin's nuclear translocation and signaling are influenced by shear stress and strain, affecting endothelial permeability. The study investigates how shear stress, strain, and surface topography impact adherens junction dynamics, regulate β-catenin localization, and influence endothelial barrier properties. Insight box Mechanical loads are potent regulators of endothelial functions through not completely elucidated mechanisms. Surface topography, wall shear stress and cyclic wall deformation contribute overlapping mechanical stimuli to which endothelial monolayer respond to adapt and maintain barrier functions. The use of custom developed flow chamber and bioreactor allows quantifying the response of mature human endothelial to well-defined wall shear stress and gradients of strain. Here, the mechanoregulation of β-catenin by substrate topography, wall shear stress, and cyclic stretch is analyzed and linked to the monolayer control of endothelial permeability.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning ranking of plausible (un)explored synergistic gene combinations using sensitivity indices of time series measurements of Wnt signaling pathway. 利用 Wnt 信号通路时间序列测量的敏感性指数,对可信(未)探索的协同基因组合进行机器学习排序。
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae020
Shriprakash Sinha
<p><p>Combinations of genes or proteins work in synergy at different times and durations in a signaling pathway. However, which combinations are prevalent at a particular time point or duration is mostly not known. Sensitivity analysis plays a major role in computing the strength of the influence of involved factors in any phenomena under investigation. When applied to expression profiles of various intra/extracellular factors that work in a signaling pathway, the variance- and density-based analysis yields a range of sensitivity indices for individual and various combinations of factors. These combinations denote the higher order interactions among the involved factors, which might be of interest. In this work, after estimating the individual effects of factors for a higher order combination, the individual indices are considered as discriminative features. Exploiting the analogy of prioritizing webpages using ranking algorithms, for a particular order, a full set of combinations of genes can be prioritized based on these features using a powerful support vector ranking algorithm. Recording the changing rankings of the combinations over time points and durations reveals which higher order combinations influence the pathway and when and where an intervention might be necessary to affect the pathway. Integration, innovation, and insight Combinations of genes or proteins work in synergy at different times and durations in a signaling pathway. However, which combinations are prevalent at a particular time point or duration is mostly not known. This work develops a search engine that reveals ground-breaking results in the form of higher order (un)explored/(un)tested combinations (as biological hypotheses), based on sensitivity indices. These indices capture the strength of influence of factors (here genes/proteins) that affect a signaling pathway. Recording the changing rankings of these combinations over time points and durations reveals how higher order combinations behave within the pathway. Significance The manuscript develops a search engine that reveals ground-breaking results in the form of higher order (un)explored/(un)tested combinations of genes/proteins (as biological hypotheses), based on sensitivity indices that capture the strength of influence of factors (here genes/proteins) that affect the Wnt signaling pathway. The pipeline uses kernel-based sensitivity indices to capture the influence of the factors in a pathway and employs powerful support vector ranking algorithm. Because of the above point, biologists/oncologists will be able to narrow down their search to particular combinations that are ranked and, if a synergistic functioning is confirmed, will be able to study the mechanism between the components of a combination, in the Wnt pathway. The search engine design is not only limited to one dataset and a range of combinations of genes/proteins. The framework can be applied/modified to all problems where one is interested in search
在信号通路中,基因或蛋白质的组合会在不同的时间和持续时间内发挥协同作用。然而,在特定的时间点或持续时间内,哪种组合是普遍存在的却大多不得而知。灵敏度分析在计算任何研究现象中相关因素的影响强度方面发挥着重要作用。当应用于在信号通路中起作用的各种细胞内/外因子的表达谱时,基于方差和密度的分析会产生一系列针对单个因子和各种因子组合的敏感性指数。这些组合表示相关因子之间的高阶交互作用,可能会引起人们的兴趣。在这项工作中,在估算了高阶组合的单个因子效应后,单个指数被视为判别特征。利用排序算法对网页进行优先排序的类比,对于特定顺序,可以使用强大的支持向量排序算法,根据这些特征对全套基因组合进行优先排序。记录这些组合在不同时间点和持续时间内的排名变化,可以揭示哪些高阶组合会影响通路,以及何时何地需要采取干预措施来影响通路。整合、创新和洞察力 基因或蛋白质的组合在信号通路的不同时间和持续时间内协同作用。然而,在特定的时间点或持续时间内,哪些组合是普遍存在的,人们大多不得而知。这项研究开发了一个搜索引擎,可根据敏感度指数,以高阶(未)探索/(未)测试组合(作为生物学假设)的形式揭示突破性结果。这些指数反映了影响信号通路的因素(此处为基因/蛋白质)的影响强度。记录这些组合在不同时间点和持续时间内的排名变化,可以揭示高阶组合在通路中的表现。意义 该手稿开发了一个搜索引擎,它能根据捕捉影响 Wnt 信号通路的因素(此处为基因/蛋白)的影响强度的灵敏度指数,以基因/蛋白的高阶(未)探索/(未)测试组合(作为生物学假设)的形式揭示突破性的结果。该管道使用基于核的灵敏度指数来捕捉通路中各因素的影响,并采用了强大的支持向量排序算法。有了上述功能,生物学家/肿瘤学家就能缩小搜索范围,找到排名靠前的特定组合,并在确认存在协同作用的情况下,研究 Wnt 通路中组合成分之间的作用机制。搜索引擎的设计不仅限于一个数据集和一系列基因/蛋白质组合。该框架可应用于/修改于人们有兴趣搜索特定现象中涉及的特定因素组合的所有问题。记录这些组合在不同时间点和持续时间内的排名变化,可以揭示高阶相互作用在通路中的表现,以及何时何地需要进行干预以影响通路,从而达到治疗目的。它揭示了 Wnt 通路中至今尚未测试过的各种 FZD-WNT 组合。
{"title":"Machine learning ranking of plausible (un)explored synergistic gene combinations using sensitivity indices of time series measurements of Wnt signaling pathway.","authors":"Shriprakash Sinha","doi":"10.1093/intbio/zyae020","DOIUrl":"10.1093/intbio/zyae020","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Combinations of genes or proteins work in synergy at different times and durations in a signaling pathway. However, which combinations are prevalent at a particular time point or duration is mostly not known. Sensitivity analysis plays a major role in computing the strength of the influence of involved factors in any phenomena under investigation. When applied to expression profiles of various intra/extracellular factors that work in a signaling pathway, the variance- and density-based analysis yields a range of sensitivity indices for individual and various combinations of factors. These combinations denote the higher order interactions among the involved factors, which might be of interest. In this work, after estimating the individual effects of factors for a higher order combination, the individual indices are considered as discriminative features. Exploiting the analogy of prioritizing webpages using ranking algorithms, for a particular order, a full set of combinations of genes can be prioritized based on these features using a powerful support vector ranking algorithm. Recording the changing rankings of the combinations over time points and durations reveals which higher order combinations influence the pathway and when and where an intervention might be necessary to affect the pathway. Integration, innovation, and insight Combinations of genes or proteins work in synergy at different times and durations in a signaling pathway. However, which combinations are prevalent at a particular time point or duration is mostly not known. This work develops a search engine that reveals ground-breaking results in the form of higher order (un)explored/(un)tested combinations (as biological hypotheses), based on sensitivity indices. These indices capture the strength of influence of factors (here genes/proteins) that affect a signaling pathway. Recording the changing rankings of these combinations over time points and durations reveals how higher order combinations behave within the pathway. Significance The manuscript develops a search engine that reveals ground-breaking results in the form of higher order (un)explored/(un)tested combinations of genes/proteins (as biological hypotheses), based on sensitivity indices that capture the strength of influence of factors (here genes/proteins) that affect the Wnt signaling pathway. The pipeline uses kernel-based sensitivity indices to capture the influence of the factors in a pathway and employs powerful support vector ranking algorithm. Because of the above point, biologists/oncologists will be able to narrow down their search to particular combinations that are ranked and, if a synergistic functioning is confirmed, will be able to study the mechanism between the components of a combination, in the Wnt pathway. The search engine design is not only limited to one dataset and a range of combinations of genes/proteins. The framework can be applied/modified to all problems where one is interested in search","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-target therapeutic modulation with natural compounds towards DNA repair MRN-checkpoint sensor genes (MRN-CSGs) and oncogenic miRNAs in breast cancer patients: a Clinico-Informatic study. 利用天然化合物对乳腺癌患者的 DNA 修复 MRN-检查点感应基因(MRN-CSGs)和致癌 miRNAs 进行多靶点治疗调节:一项临床信息研究。
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae019
Jitender Singh, Krishan L Khanduja, Pramod K Avti

Breast cancer, more prevalent in women, often arises due to abnormalities in the MRN-checkpoint sensor genes (MRN-CSG), responsible for DNA damage detection and repair. Abnormality in this complex is due to the suppression of various effectors such as siRNAs, miRNAs, and transcriptional factors responsible for breast tumor progression. This study analyzed breast tumor samples (n = 60) and identified four common miRNAs (miR-1-3p, miR-210-3p, miR-16-5p, miR-34a-5p) out of 12, exploring their interactions with MRN-CSG. The 3D structures of these miRNA-MRN-CSG complexes displayed strong thermodynamic stability. Screening 7711 natural compounds resulted in two natural compounds (F0870-0001 and F0922-0471) with the lowest ligand binding energies (ΔG = -8.4 to-11.6 kcal/mol), targeting two common miRNAs. Docking results showed that one natural compound (PubChem id-5 281 614) bound to all MRN-CSG components (ΔG = -6.2 to -7.3 kcal/mol), while F6782-0723 bound only to RAD50 and NBN. These compounds exhibited minimal dissociation constants (Kd and Ki) and thermodynamically stable minimum free energy (MMGBSA) values. Molecular dynamics simulations indicated highly stable natural compound-MRN-CSG complexes, with consistent RMSD, RMSF, and strong residual correlation. These top-selected compounds displayed robust intermolecular H-bonding, low carcinogenicity, low toxicity, and drug-like properties. Consequently, these compounds hold promise for regulating miRNA and MRN-CSG DNA repair mechanisms in breast cancer therapy. Insight Box: This study investigated breast tumor samples (n = 60) and identified four miRNAs (miR-1-3p, miR-210-3p, miR-16-5p, miR-34a-5p) that interact with MRN-checkpoint sensor genes (MRN-CSG), crucial for DNA damage repair. Screening 7711 natural compounds highlighted two compounds (F0870-0001 and F0922-0471) with the lowest binding energies (ΔG = -8.4 to -11.6 kcal/mol), targeting two common miRNAs (miR-1-3p and miR-34a-5p). Another natural compound (PubChem id-5 281 614, ΔG = -6.2 to -7.3 kcal/mol) bound all MRN-CSG components, while F6782-0723 targeted RAD50 and NBN. These compounds showed strong binding stability, favorable MMGBSA values, and minimal dissociation constants. Molecular dynamics simulations confirmed the stability and drug-like properties of these compounds, indicating their potential in breast cancer therapy by modulating miRNA and MRN-CSG DNA repair mechanisms.

乳腺癌在女性中发病率较高,通常是由于负责 DNA 损伤检测和修复的 MRN-检查点传感器基因(MRN-CSG)异常所致。这一复合体的异常会抑制各种效应因子,如 siRNA、miRNA 和转录因子,从而导致乳腺肿瘤的进展。本研究分析了乳腺肿瘤样本(n = 60),从12个miRNA中鉴定出了4个常见的miRNA(miR-1-3p、miR-210-3p、miR-16-5p、miR-34a-5p),并探讨了它们与MRN-CSG的相互作用。这些 miRNA-MRN-CSG 复合物的三维结构显示出很强的热力学稳定性。对 7711 种天然化合物进行筛选后,发现两种天然化合物(F0870-0001 和 F0922-0471)的配体结合能最低(ΔG = -8.4 至 11.6 kcal/mol),可靶向两种常见的 miRNA。对接结果显示,一种天然化合物(PubChem id-5 281 614)与所有 MRN-CSG 成分结合(ΔG = -6.2 至 -7.3 kcal/mol),而 F6782-0723 只与 RAD50 和 NBN 结合。这些化合物表现出最小解离常数(Kd 和 Ki)和热力学稳定的最小自由能(MMGBSA)值。分子动力学模拟表明,天然化合物-MRN-CSG 复合物高度稳定,具有一致的 RMSD、RMSF 和较强的残差相关性。这些经过严格筛选的化合物显示出强大的分子间 H 键、低致癌性、低毒性和类药物特性。因此,这些化合物有望在乳腺癌治疗中调节 miRNA 和 MRN-CSG DNA 修复机制。洞察框本研究调查了乳腺肿瘤样本(n = 60),并确定了四种 miRNA(miR-1-3p、miR-210-3p、miR-16-5p 和 miR-34a-5p),它们与对 DNA 损伤修复至关重要的 MRN 检查点传感器基因(MRN-CSG)相互作用。通过筛选 7711 种天然化合物,发现两种化合物(F0870-0001 和 F0922-0471)的结合能最低(ΔG = -8.4 至 -11.6 kcal/mol),可靶向两种常见的 miRNA(miR-1-3p 和 miR-34a-5p)。另一种天然化合物(PubChem id-5 281 614,ΔG = -6.2 至 -7.3 kcal/mol)结合了所有 MRN-CSG 成分,而 F6782-0723 则针对 RAD50 和 NBN。这些化合物显示出很强的结合稳定性、良好的 MMGBSA 值和最小的解离常数。分子动力学模拟证实了这些化合物的稳定性和类药物特性,表明它们具有通过调节 miRNA 和 MRN-CSG DNA 修复机制来治疗乳腺癌的潜力。
{"title":"Multi-target therapeutic modulation with natural compounds towards DNA repair MRN-checkpoint sensor genes (MRN-CSGs) and oncogenic miRNAs in breast cancer patients: a Clinico-Informatic study.","authors":"Jitender Singh, Krishan L Khanduja, Pramod K Avti","doi":"10.1093/intbio/zyae019","DOIUrl":"https://doi.org/10.1093/intbio/zyae019","url":null,"abstract":"<p><p>Breast cancer, more prevalent in women, often arises due to abnormalities in the MRN-checkpoint sensor genes (MRN-CSG), responsible for DNA damage detection and repair. Abnormality in this complex is due to the suppression of various effectors such as siRNAs, miRNAs, and transcriptional factors responsible for breast tumor progression. This study analyzed breast tumor samples (n = 60) and identified four common miRNAs (miR-1-3p, miR-210-3p, miR-16-5p, miR-34a-5p) out of 12, exploring their interactions with MRN-CSG. The 3D structures of these miRNA-MRN-CSG complexes displayed strong thermodynamic stability. Screening 7711 natural compounds resulted in two natural compounds (F0870-0001 and F0922-0471) with the lowest ligand binding energies (ΔG = -8.4 to-11.6 kcal/mol), targeting two common miRNAs. Docking results showed that one natural compound (PubChem id-5 281 614) bound to all MRN-CSG components (ΔG = -6.2 to -7.3 kcal/mol), while F6782-0723 bound only to RAD50 and NBN. These compounds exhibited minimal dissociation constants (Kd and Ki) and thermodynamically stable minimum free energy (MMGBSA) values. Molecular dynamics simulations indicated highly stable natural compound-MRN-CSG complexes, with consistent RMSD, RMSF, and strong residual correlation. These top-selected compounds displayed robust intermolecular H-bonding, low carcinogenicity, low toxicity, and drug-like properties. Consequently, these compounds hold promise for regulating miRNA and MRN-CSG DNA repair mechanisms in breast cancer therapy. Insight Box: This study investigated breast tumor samples (n = 60) and identified four miRNAs (miR-1-3p, miR-210-3p, miR-16-5p, miR-34a-5p) that interact with MRN-checkpoint sensor genes (MRN-CSG), crucial for DNA damage repair. Screening 7711 natural compounds highlighted two compounds (F0870-0001 and F0922-0471) with the lowest binding energies (ΔG = -8.4 to -11.6 kcal/mol), targeting two common miRNAs (miR-1-3p and miR-34a-5p). Another natural compound (PubChem id-5 281 614, ΔG = -6.2 to -7.3 kcal/mol) bound all MRN-CSG components, while F6782-0723 targeted RAD50 and NBN. These compounds showed strong binding stability, favorable MMGBSA values, and minimal dissociation constants. Molecular dynamics simulations confirmed the stability and drug-like properties of these compounds, indicating their potential in breast cancer therapy by modulating miRNA and MRN-CSG DNA repair mechanisms.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA break clustering as a predictor of cell death across various radiation qualities: influence of cell size, cell asymmetry, and beam orientation. DNA断裂聚类作为各种辐射质量下细胞死亡的预测因子:细胞大小、细胞不对称和光束方向的影响。
IF 1.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae015
Floriane Poignant, Eloise Pariset, Ianik Plante, Artem L Ponomarev, Trevor Evain, Louise Viger, Tony C Slaba, Steve R Blattnig, Sylvain V Costes

Cosmic radiation, composed of high charge and energy (HZE) particles, causes cellular DNA damage that can result in cell death or mutation that can evolve into cancer. In this work, a cell death model is applied to several cell lines exposed to HZE ions spanning a broad range of linear energy transfer (LET) values. We hypothesize that chromatin movement leads to the clustering of multiple double strand breaks (DSB) within one radiation-induced foci (RIF). The survival probability of a cell population is determined by averaging the survival probabilities of individual cells, which is function of the number of pairwise DSB interactions within RIF. The simulation code RITCARD was used to compute DSB. Two clustering approaches were applied to determine the number of RIF per cell. RITCARD outputs were combined with experimental data from four normal human cell lines to derive the model parameters and expand its predictions in response to ions with LET ranging from ~0.2 keV/μm to ~3000 keV/μm. Spherical and ellipsoidal nuclear shapes and two ion beam orientations were modeled to assess the impact of geometrical properties on cell death. The calculated average number of RIF per cell reproduces the saturation trend for high doses and high-LET values that is usually experimentally observed. The cell survival model generates the recognizable bell shape of LET dependence for the relative biological effectiveness (RBE). At low LET, smaller nuclei have lower survival due to increased DNA density and DSB clustering. At high LET, nuclei with a smaller irradiation area-either because of a smaller size or a change in beam orientation-have a higher survival rate due to a change in the distribution of DSB/RIF per cell. If confirmed experimentally, the geometric characteristics of cells would become a significant factor in predicting radiation-induced biological effects. Insight Box: High-charge and energy (HZE) ions are characterized by dense linear energy transfer (LET) that induce unique spatial distributions of DNA damage in cell nuclei that result in a greater biological effect than sparsely ionizing radiation like X-rays. HZE ions are a prominent component of galactic cosmic ray exposure during human spaceflight and specific ions are being used for radiotherapy. Here, we model DNA damage clustering at sub-micrometer scale to predict cell survival. The model is in good agreement with experimental data for a broad range of LET. Notably, the model indicates that nuclear geometry and ion beam orientation affect DNA damage clustering, which reveals their possible role in mediating cell radiosensitivity.

由高电荷和高能量(HZE)粒子组成的宇宙辐射会造成细胞 DNA 损伤,从而导致细胞死亡或突变,进而演变成癌症。在这项研究中,我们将细胞死亡模型应用于暴露在线性能量转移(LET)值范围广泛的 HZE 离子下的几种细胞系。我们假设染色质运动导致多个双链断裂(DSB)聚集在一个辐射诱发灶(RIF)内。细胞群的存活概率由单个细胞的存活概率平均值决定,而单个细胞的存活概率是 RIF 内成对 DSB 相互作用数量的函数。模拟代码 RITCARD 用于计算 DSB。采用两种聚类方法来确定每个细胞的 RIF 数量。RITCARD 的输出结果与四个正常人细胞系的实验数据相结合,得出了模型参数,并扩展了模型对 LET 从 ~0.2 keV/μm 到 ~3000 keV/μm 的离子的预测。对球形和椭圆形核形状以及两种离子束方向进行了建模,以评估几何特性对细胞死亡的影响。计算得出的每个细胞的平均 RIF 数量再现了实验中通常观察到的高剂量和高 LET 值的饱和趋势。细胞存活模型为相对生物效应(RBE)生成了可识别的钟形 LET 依赖性。在低 LET 下,由于 DNA 密度增加和 DSB 聚集,较小的细胞核存活率较低。在高 LET 下,由于每个细胞中 DSB/RIF 的分布发生变化,辐照面积较小的细胞核--可能因为尺寸较小,也可能因为光束方向发生变化--存活率较高。如果得到实验证实,细胞的几何特征将成为预测辐射诱导生物效应的一个重要因素。洞察方框:高电荷和高能量(HZE)离子的特点是密集的线性能量转移(LET),可在细胞核中诱导独特的 DNA 损伤空间分布,从而产生比 X 射线等稀疏电离辐射更大的生物效应。HZE 离子是人类太空飞行期间受到银河宇宙射线照射的主要成分,特定离子正被用于放射治疗。在这里,我们建立了亚微米尺度的 DNA 损伤集群模型,以预测细胞存活率。该模型与大范围 LET 的实验数据非常吻合。值得注意的是,模型表明核几何形状和离子束方向会影响 DNA 损伤聚类,这揭示了它们在介导细胞放射敏感性方面可能发挥的作用。
{"title":"DNA break clustering as a predictor of cell death across various radiation qualities: influence of cell size, cell asymmetry, and beam orientation.","authors":"Floriane Poignant, Eloise Pariset, Ianik Plante, Artem L Ponomarev, Trevor Evain, Louise Viger, Tony C Slaba, Steve R Blattnig, Sylvain V Costes","doi":"10.1093/intbio/zyae015","DOIUrl":"https://doi.org/10.1093/intbio/zyae015","url":null,"abstract":"<p><p>Cosmic radiation, composed of high charge and energy (HZE) particles, causes cellular DNA damage that can result in cell death or mutation that can evolve into cancer. In this work, a cell death model is applied to several cell lines exposed to HZE ions spanning a broad range of linear energy transfer (LET) values. We hypothesize that chromatin movement leads to the clustering of multiple double strand breaks (DSB) within one radiation-induced foci (RIF). The survival probability of a cell population is determined by averaging the survival probabilities of individual cells, which is function of the number of pairwise DSB interactions within RIF. The simulation code RITCARD was used to compute DSB. Two clustering approaches were applied to determine the number of RIF per cell. RITCARD outputs were combined with experimental data from four normal human cell lines to derive the model parameters and expand its predictions in response to ions with LET ranging from ~0.2 keV/μm to ~3000 keV/μm. Spherical and ellipsoidal nuclear shapes and two ion beam orientations were modeled to assess the impact of geometrical properties on cell death. The calculated average number of RIF per cell reproduces the saturation trend for high doses and high-LET values that is usually experimentally observed. The cell survival model generates the recognizable bell shape of LET dependence for the relative biological effectiveness (RBE). At low LET, smaller nuclei have lower survival due to increased DNA density and DSB clustering. At high LET, nuclei with a smaller irradiation area-either because of a smaller size or a change in beam orientation-have a higher survival rate due to a change in the distribution of DSB/RIF per cell. If confirmed experimentally, the geometric characteristics of cells would become a significant factor in predicting radiation-induced biological effects. Insight Box: High-charge and energy (HZE) ions are characterized by dense linear energy transfer (LET) that induce unique spatial distributions of DNA damage in cell nuclei that result in a greater biological effect than sparsely ionizing radiation like X-rays. HZE ions are a prominent component of galactic cosmic ray exposure during human spaceflight and specific ions are being used for radiotherapy. Here, we model DNA damage clustering at sub-micrometer scale to predict cell survival. The model is in good agreement with experimental data for a broad range of LET. Notably, the model indicates that nuclear geometry and ion beam orientation affect DNA damage clustering, which reveals their possible role in mediating cell radiosensitivity.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multilayer microfluidic system for studies of the dynamic responses of cellular proteins to oxygen switches at the single-cell level. 用于在单细胞水平研究细胞蛋白质对氧气开关的动态响应的多层微流体系统。
IF 2.5 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-01-23 DOI: 10.1093/intbio/zyae011
Wei Fu, Shujing Wang, Qi Ouyang, Chunxiong Luo

Oxygen levels vary in the environment. Oxygen availability has a major effect on almost all organisms, and oxygen is far more than a substrate for energy production. However, less is known about related biological processes under hypoxic conditions and about the adaptations to changing oxygen concentrations. The yeast Saccharomyces cerevisiae can adapt its metabolism for growth under different oxygen concentrations and can grow even under anaerobic conditions. Therefore, we developed a microfluidic device that can generate serial, accurately controlled oxygen concentrations for single-cell studies of multiple yeast strains. This device can construct a broad range of oxygen concentrations, [O2] through on-chip gas-mixing channels from two gases fed to the inlets. Gas diffusion through thin polydimethylsiloxane (PDMS) can lead to the equilibration of [O2] in the medium in the cell culture layer under gas cover regions within 2 min. Here, we established six different and stable [O2] varying between ~0.1 and 20.9% in the corresponding layers of the device designed for multiple parallel single-cell culture of four different yeast strains. Using this device, the dynamic responses of different yeast transcription factors and metabolism-related proteins were studied when the [O2] decreased from 20.9% to serial hypoxic concentrations. We showed that different hypoxic conditions induced varying degrees of transcription factor responses and changes in respiratory metabolism levels. This device can also be used in studies of the aging and physiology of yeast under different oxygen conditions and can provide new insights into the relationship between oxygen and organisms. Integration, innovation and insight: Most living cells are sensitive to the oxygen concentration because they depend on oxygen for survival and proper cellular functions. Here, a composite microfluidic device was designed for yeast single-cell studies at a series of accurately controlled oxygen concentrations. Using this device, we studied the dynamic responses of various transcription factors and proteins to changes in the oxygen concentration. This study is the first to examine protein dynamics and temporal behaviors under different hypoxic conditions at the single yeast cell level, which may provide insights into the processes involved in yeast and even mammalian cells. This device also provides a base model that can be extended to oxygen-related biology and can acquire more information about the complex networks of organisms.

环境中的氧气含量各不相同。氧气的可用性对几乎所有生物都有重大影响,氧气的作用远不止是产生能量的底物。然而,人们对缺氧条件下的相关生物过程以及对氧气浓度变化的适应性知之甚少。酵母菌能适应不同氧浓度下的新陈代谢,甚至能在厌氧条件下生长。因此,我们开发了一种微流控装置,可以产生序列化、精确控制的氧气浓度,用于多个酵母菌株的单细胞研究。该装置可通过片上气体混合通道,从两种气体输入入口处构建出范围广泛的氧气浓度[O2]。气体通过薄薄的聚二甲基硅氧烷(PDMS)扩散,可在 2 分钟内使气体覆盖区域内细胞培养层培养基中的[O2]达到平衡。在这里,我们在为四种不同酵母菌株的多重平行单细胞培养而设计的装置的相应层中建立了六种不同且稳定的[O2],其变化范围在 ~0.1% 到 20.9% 之间。利用该装置,研究了当[O2]从20.9%下降到系列缺氧浓度时,不同酵母转录因子和代谢相关蛋白的动态反应。我们发现,不同的缺氧条件会诱导不同程度的转录因子反应和呼吸代谢水平的变化。该装置还可用于研究不同氧气条件下酵母菌的衰老和生理学,并能为氧气与生物体之间的关系提供新的见解。整合、创新和洞察力:大多数活细胞对氧气浓度都很敏感,因为它们的生存和正常细胞功能都依赖于氧气。在这里,我们设计了一种复合微流体装置,用于在一系列精确控制的氧气浓度下进行酵母单细胞研究。利用该装置,我们研究了各种转录因子和蛋白质对氧气浓度变化的动态响应。这项研究首次在单个酵母细胞水平上研究了不同缺氧条件下蛋白质的动态和时间行为,为了解酵母甚至哺乳动物细胞的相关过程提供了启示。该装置还提供了一个基础模型,可扩展到与氧气相关的生物学领域,并能获取更多有关生物体复杂网络的信息。
{"title":"A multilayer microfluidic system for studies of the dynamic responses of cellular proteins to oxygen switches at the single-cell level.","authors":"Wei Fu, Shujing Wang, Qi Ouyang, Chunxiong Luo","doi":"10.1093/intbio/zyae011","DOIUrl":"https://doi.org/10.1093/intbio/zyae011","url":null,"abstract":"<p><p>Oxygen levels vary in the environment. Oxygen availability has a major effect on almost all organisms, and oxygen is far more than a substrate for energy production. However, less is known about related biological processes under hypoxic conditions and about the adaptations to changing oxygen concentrations. The yeast Saccharomyces cerevisiae can adapt its metabolism for growth under different oxygen concentrations and can grow even under anaerobic conditions. Therefore, we developed a microfluidic device that can generate serial, accurately controlled oxygen concentrations for single-cell studies of multiple yeast strains. This device can construct a broad range of oxygen concentrations, [O2] through on-chip gas-mixing channels from two gases fed to the inlets. Gas diffusion through thin polydimethylsiloxane (PDMS) can lead to the equilibration of [O2] in the medium in the cell culture layer under gas cover regions within 2 min. Here, we established six different and stable [O2] varying between ~0.1 and 20.9% in the corresponding layers of the device designed for multiple parallel single-cell culture of four different yeast strains. Using this device, the dynamic responses of different yeast transcription factors and metabolism-related proteins were studied when the [O2] decreased from 20.9% to serial hypoxic concentrations. We showed that different hypoxic conditions induced varying degrees of transcription factor responses and changes in respiratory metabolism levels. This device can also be used in studies of the aging and physiology of yeast under different oxygen conditions and can provide new insights into the relationship between oxygen and organisms. Integration, innovation and insight: Most living cells are sensitive to the oxygen concentration because they depend on oxygen for survival and proper cellular functions. Here, a composite microfluidic device was designed for yeast single-cell studies at a series of accurately controlled oxygen concentrations. Using this device, we studied the dynamic responses of various transcription factors and proteins to changes in the oxygen concentration. This study is the first to examine protein dynamics and temporal behaviors under different hypoxic conditions at the single yeast cell level, which may provide insights into the processes involved in yeast and even mammalian cells. This device also provides a base model that can be extended to oxygen-related biology and can acquire more information about the complex networks of organisms.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Integrative Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1