Predicting Mutations Generated by Cas9, Base Editing, and Prime Editing in Mammalian Cells.

IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY CRISPR Journal Pub Date : 2023-08-01 DOI:10.1089/crispr.2023.0016
Juliane Weller, Ananth Pallaseni, Jonas Koeppel, Leopold Parts
{"title":"Predicting Mutations Generated by Cas9, Base Editing, and Prime Editing in Mammalian Cells.","authors":"Juliane Weller,&nbsp;Ananth Pallaseni,&nbsp;Jonas Koeppel,&nbsp;Leopold Parts","doi":"10.1089/crispr.2023.0016","DOIUrl":null,"url":null,"abstract":"<p><p>The first fruits of the CRISPR-Cas revolution are starting to enter the clinic, with gene editing therapies offering solutions to previously incurable genetic diseases. The success of such applications hinges on control over the mutations that are generated, which are known to vary depending on the targeted locus. In this review, we present the current state of understanding and predicting CRISPR-Cas cutting, base editing, and prime editing outcomes in mammalian cells. We first provide an introduction to the basics of DNA repair and machine learning that the models rely on. We then overview the datasets and methods created for characterizing edits at scale, as well as the insights that have been derived from them. The predictions generated from these models serve as a foundation for designing efficient experiments across the broad contexts where these tools are applied.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 4","pages":"325-338"},"PeriodicalIF":3.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2023.0016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The first fruits of the CRISPR-Cas revolution are starting to enter the clinic, with gene editing therapies offering solutions to previously incurable genetic diseases. The success of such applications hinges on control over the mutations that are generated, which are known to vary depending on the targeted locus. In this review, we present the current state of understanding and predicting CRISPR-Cas cutting, base editing, and prime editing outcomes in mammalian cells. We first provide an introduction to the basics of DNA repair and machine learning that the models rely on. We then overview the datasets and methods created for characterizing edits at scale, as well as the insights that have been derived from them. The predictions generated from these models serve as a foundation for designing efficient experiments across the broad contexts where these tools are applied.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测哺乳动物细胞中Cas9、碱基编辑和引体编辑产生的突变。
CRISPR-Cas革命的第一批成果开始进入临床,基因编辑疗法为以前无法治愈的遗传疾病提供了解决方案。这种应用的成功取决于对所产生的突变的控制,这些突变是根据目标位点而变化的。在这篇综述中,我们介绍了对哺乳动物细胞中CRISPR-Cas切割、碱基编辑和初始编辑结果的理解和预测的现状。我们首先介绍了模型所依赖的DNA修复和机器学习的基础知识。然后,我们概述了为描述大规模编辑而创建的数据集和方法,以及从中获得的见解。从这些模型中产生的预测可以作为在应用这些工具的广泛背景下设计有效实验的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CRISPR Journal
CRISPR Journal Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍: In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR. Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.
期刊最新文献
Engineering CjCas9 for Efficient Base Editing and Prime Editing. CRISPR-Cas9-Mediated Targeting of Multidrug Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Early Detection of Wildlife Disease Pathogens Using CRISPR-Cas System Methods. CRISPR-GRIT: Guide RNAs with Integrated Repair Templates Enable Precise Multiplexed Genome Editing in the Diploid Fungal Pathogen Candida albicans. Genome Editing in Apicomplexan Parasites: Current Status, Challenges, and Future Possibilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1