首页 > 最新文献

CRISPR Journal最新文献

英文 中文
Exploring the Cytoplasmic Retention of CRISPR-Cas9 in Eukaryotic Cells: The Role of Nuclear Localization Signals and Ribosomal Interactions.
IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2025-02-28 DOI: 10.1089/crispr.2024.0074
Rami M Major, Christine A Mills, Lei Xing, James L Krantz, Justin M Wolter, Mark J Zylka

Cas9 must be localized to the nucleus to access the genome of mammalian cells. For most proteins, adding a single nuclear localization signal (NLS) is sufficient to promote nuclear entry. However, Cas9 nuclear entry appears to be inefficient as multiple NLSs are typically added to Cas9. Here, we found that three different Cas9 variants interact with the ribosome in HEK293T cells, and that this interaction is RNA mediated. Following immunoprecipitation-mass spectrometry of cytoplasmic-localized Cas9-0NLS and nuclear-localized Cas9-4NLS constructs, we identified novel Cas9 interactors in postmitotic neurons, including KEAP1 and additional ribosomal subunits, the latter were enriched in Cas9-0NLS samples. Collectively, our results suggest that Cas9 is sequestered in the cytoplasm of mammalian cells, in part, via interaction with the ribosome. Increasing the number of NLSs on Cas9 and/or increasing the amount of cytoplasmic guide RNA has the potential to outcompete ribosomal RNA binding and promote efficient nuclear localization of CRISPR-Cas9 variants.

{"title":"Exploring the Cytoplasmic Retention of CRISPR-Cas9 in Eukaryotic Cells: The Role of Nuclear Localization Signals and Ribosomal Interactions.","authors":"Rami M Major, Christine A Mills, Lei Xing, James L Krantz, Justin M Wolter, Mark J Zylka","doi":"10.1089/crispr.2024.0074","DOIUrl":"https://doi.org/10.1089/crispr.2024.0074","url":null,"abstract":"<p><p>Cas9 must be localized to the nucleus to access the genome of mammalian cells. For most proteins, adding a single nuclear localization signal (NLS) is sufficient to promote nuclear entry. However, Cas9 nuclear entry appears to be inefficient as multiple NLSs are typically added to Cas9. Here, we found that three different Cas9 variants interact with the ribosome in HEK293T cells, and that this interaction is RNA mediated. Following immunoprecipitation-mass spectrometry of cytoplasmic-localized Cas9-0NLS and nuclear-localized Cas9-4NLS constructs, we identified novel Cas9 interactors in postmitotic neurons, including KEAP1 and additional ribosomal subunits, the latter were enriched in Cas9-0NLS samples. Collectively, our results suggest that Cas9 is sequestered in the cytoplasm of mammalian cells, in part, <i>via</i> interaction with the ribosome. Increasing the number of NLSs on Cas9 and/or increasing the amount of cytoplasmic guide RNA has the potential to outcompete ribosomal RNA binding and promote efficient nuclear localization of CRISPR-Cas9 variants.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143528006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Re: Novel Off-Targeting Events Identified after Genome-Wide Analysis of CRISPR-Cas Edited Pigs.
IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2025-02-28 DOI: 10.1089/crispr.2024.0091
Ashley L Cook, Adam L Moyer, Lynne Boxer, Alexis L Norris
{"title":"Re: Novel Off-Targeting Events Identified after Genome-Wide Analysis of CRISPR-Cas Edited Pigs.","authors":"Ashley L Cook, Adam L Moyer, Lynne Boxer, Alexis L Norris","doi":"10.1089/crispr.2024.0091","DOIUrl":"https://doi.org/10.1089/crispr.2024.0091","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143528010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Genome Editing in Mollusks (Crassostrea gigas) in Vitro Validation of sgRNA and Identifying Key Factors Influencing Efficiency.
IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2025-02-28 DOI: 10.1089/crispr.2024.0086
Qian Li, Hong Yu, Shaojun Du, Qi Li

CRISPR-Cas9 genome editing holds tremendous potential for accelerating genetic improvements in aquaculture. The success of the CRISPR-Cas9 system relies on the specificity and efficiency of engineered single-guide RNAs (sgRNAs). In this study, we optimized an in vitro validation protocol for sgRNAs to streamline the gene editing process, capitalizing on the limited breeding season of the Pacific oyster (Crassostrea gigas). We evaluated the efficiency of 11 sgRNAs targeting four genes both in vitro and in vivo in C. gigas. In addition, we found that Cas9 protein differs from Cas9 mRNA in gene editing efficiency at various stages of early development. Cas9 protein proved particular efficacy in achieving early and efficient gene knockout, functioning effectively during the first cell division and facilitating biallelic gene knockouts. Statistical analysis showed that in the protein group, the biallelic editing frequency ranged from 12.5% to 57.8%, and the overall editing frequency reached as high as 75-90.6%. The mRNA group exhibited a biallelic editing frequency of 3.1-14.0% and the overall editing frequency spanning 65.6-78.1%. Contrary to expectations, low-temperature incubation (20°C) of oyster embryos prolonged the time window for the first cell division but did not improve gene editing efficiency, likely due to the high temperature sensitivity of Cas9 enzyme activity. Together, this study provides a comprehensive analysis of factors affecting the efficiency of CRISPR-Cas9 gene editing in C. gigas, providing a robust framework for future gene editing endeavors in mollusks and other marine invertebrates.

CRISPR-Cas9 基因组编辑技术在加快水产养殖遗传改良方面具有巨大潜力。CRISPR-Cas9 系统的成功依赖于工程化单导 RNA(sgRNA)的特异性和效率。在本研究中,我们利用太平洋牡蛎(Crassostrea gigas)有限的繁殖季节,优化了 sgRNA 的体外验证方案,以简化基因编辑过程。我们评估了 11 种 sgRNAs 在体外和体内针对千兆蚌 4 个基因的效率。此外,我们还发现,在早期发育的不同阶段,Cas9 蛋白与 Cas9 mRNA 的基因编辑效率不同。事实证明,Cas9 蛋白在实现早期和高效基因敲除方面具有特别的功效,在细胞第一次分裂期间就能有效发挥作用,并能促进双拷贝基因敲除。统计分析表明,在蛋白组中,双拷贝编辑频率从12.5%到57.8%不等,总体编辑频率高达75-90.6%。mRNA 组的双拷贝编辑频率为 3.1%-14.0%,总体编辑频率为 65.6%-78.1%。与预期相反,牡蛎胚胎的低温培养(20°C)延长了第一次细胞分裂的时间窗口,但并没有提高基因编辑效率,这可能是由于 Cas9 酶活性对温度的高敏感性造成的。总之,这项研究全面分析了影响千足牡蛎CRISPR-Cas9基因编辑效率的因素,为软体动物和其他海洋无脊椎动物未来的基因编辑工作提供了一个稳健的框架。
{"title":"Optimizing Genome Editing in Mollusks (Crassostrea gigas) <i>in Vitro</i> Validation of sgRNA and Identifying Key Factors Influencing Efficiency.","authors":"Qian Li, Hong Yu, Shaojun Du, Qi Li","doi":"10.1089/crispr.2024.0086","DOIUrl":"https://doi.org/10.1089/crispr.2024.0086","url":null,"abstract":"<p><p>CRISPR-Cas9 genome editing holds tremendous potential for accelerating genetic improvements in aquaculture. The success of the CRISPR-Cas9 system relies on the specificity and efficiency of engineered single-guide RNAs (sgRNAs). In this study, we optimized an <i>in vitro</i> validation protocol for sgRNAs to streamline the gene editing process, capitalizing on the limited breeding season of the Pacific oyster (<i>Crassostrea gigas</i>). We evaluated the efficiency of 11 sgRNAs targeting four genes both <i>in vitro</i> and <i>in vivo</i> in <i>C. gigas</i>. In addition, we found that Cas9 protein differs from Cas9 mRNA in gene editing efficiency at various stages of early development. Cas9 protein proved particular efficacy in achieving early and efficient gene knockout, functioning effectively during the first cell division and facilitating biallelic gene knockouts. Statistical analysis showed that in the protein group, the biallelic editing frequency ranged from 12.5% to 57.8%, and the overall editing frequency reached as high as 75-90.6%. The mRNA group exhibited a biallelic editing frequency of 3.1-14.0% and the overall editing frequency spanning 65.6-78.1%. Contrary to expectations, low-temperature incubation (20°C) of oyster embryos prolonged the time window for the first cell division but did not improve gene editing efficiency, likely due to the high temperature sensitivity of Cas9 enzyme activity. Together, this study provides a comprehensive analysis of factors affecting the efficiency of CRISPR-Cas9 gene editing in <i>C. gigas</i>, providing a robust framework for future gene editing endeavors in mollusks and other marine invertebrates.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143528008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies and Protocols for Optimized Genome Editing in Potato. 马铃薯基因组编辑优化策略与方案
IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2025-02-01 Epub Date: 2024-12-04 DOI: 10.1089/crispr.2024.0068
Frida Meijer Carlsen, Ida Westberg, Ida Elisabeth Johansen, Erik Andreasson, Bent Larsen Petersen

The potato family includes a highly diverse cultivar repertoire and has a high potential for nutritional yield improvement and refinement but must in line with other crops be adapted to biotic and abiotic stresses, for example, accelerated by climate change and environmental demands. The combination of pluripotency, high ploidy, and relative ease of protoplast isolation, transformation, and regeneration together with clonal propagation through tubers makes potato highly suitable for precise genetic engineering. Most potato varieties are tetraploid having a very high prevalence of length polymorphisms and small nucleotide polymorphisms between alleles, often complicating CRISPR-Cas editing designs and strategies. CRISPR-Cas editing in potato can be divided into (i) characterization of target area and in silico-aided editing design, (ii) isolation and editing of protoplast cells, and (iii) the subsequent explant regeneration from single protoplast cells. Implementation of efficient CRISPR-Cas editing relies on efficient editing at the protoplast (cell pool) level and on robust high-throughput editing scoring methods at the cell pool and explant level. Gene and chromatin structure are additional features to optionally consider. Strategies and solutions for addressing key steps in genome editing of potato, including light conditions and schemes for reduced exposure to hormones during explant regeneration, which is often linked to somaclonal variation, are highlighted.

马铃薯家族包括高度多样化的品种,具有提高和改良营养产量的巨大潜力,但必须像其他作物一样适应生物和非生物胁迫,例如,气候变化和环境需求加速了这种胁迫。马铃薯的多能性、高倍性和相对容易的原生质体分离、转化和再生,以及通过块茎的无性繁殖,使其非常适合用于精确的基因工程。大多数马铃薯品种是四倍体,在等位基因之间具有非常高的长度多态性和小核苷酸多态性,这通常使CRISPR-Cas编辑设计和策略复杂化。马铃薯CRISPR-Cas编辑可分为(i)目标区域的表征和硅辅助编辑设计,(ii)原生质体细胞的分离和编辑,以及(iii)随后从单个原生质体细胞中进行外植体再生。实现高效的CRISPR-Cas编辑依赖于原生质体(细胞池)水平的高效编辑,以及细胞池和外植体水平上稳健的高通量编辑评分方法。基因和染色质结构是可选择考虑的附加特征。强调了解决马铃薯基因组编辑关键步骤的策略和解决方案,包括外植体再生期间的光照条件和减少激素暴露的方案,这通常与体细胞无性系变异有关。
{"title":"Strategies and Protocols for Optimized Genome Editing in Potato.","authors":"Frida Meijer Carlsen, Ida Westberg, Ida Elisabeth Johansen, Erik Andreasson, Bent Larsen Petersen","doi":"10.1089/crispr.2024.0068","DOIUrl":"10.1089/crispr.2024.0068","url":null,"abstract":"<p><p>The potato family includes a highly diverse cultivar repertoire and has a high potential for nutritional yield improvement and refinement but must in line with other crops be adapted to biotic and abiotic stresses, for example, accelerated by climate change and environmental demands. The combination of pluripotency, high ploidy, and relative ease of protoplast isolation, transformation, and regeneration together with clonal propagation through tubers makes potato highly suitable for precise genetic engineering. Most potato varieties are tetraploid having a very high prevalence of length polymorphisms and small nucleotide polymorphisms between alleles, often complicating CRISPR-Cas editing designs and strategies. CRISPR-Cas editing in potato can be divided into (i) characterization of target area and <i>in silico</i>-aided editing design, (ii) isolation and editing of protoplast cells, and (iii) the subsequent explant regeneration from single protoplast cells. Implementation of efficient CRISPR-Cas editing relies on efficient editing at the protoplast (cell pool) level and on robust high-throughput editing scoring methods at the cell pool and explant level. Gene and chromatin structure are additional features to optionally consider. Strategies and solutions for addressing key steps in genome editing of potato, including light conditions and schemes for reduced exposure to hormones during explant regeneration, which is often linked to somaclonal variation, are highlighted.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"37-50"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2024.
IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2025-02-01 DOI: 10.1089/crispr.2024.03520.revack
{"title":"Acknowledgment of Reviewers 2024.","authors":"","doi":"10.1089/crispr.2024.03520.revack","DOIUrl":"https://doi.org/10.1089/crispr.2024.03520.revack","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"8 1","pages":"71"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143451046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Managing Expectations for CRISPR in a Volatile World.
IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2025-02-01 Epub Date: 2025-01-23 DOI: 10.1089/crispr.2025.0006
Rodolphe Barrangou
{"title":"Managing Expectations for CRISPR in a Volatile World.","authors":"Rodolphe Barrangou","doi":"10.1089/crispr.2025.0006","DOIUrl":"10.1089/crispr.2025.0006","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"1"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring the Land and Sea: Enhancing Efficiency Through CRISPR-Cas Driven Depletion and Enrichment of Environmental DNA.
IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2025-02-01 Epub Date: 2025-01-06 DOI: 10.1089/crispr.2024.0050
Anya Kardailsky, Benjamín Durán-Vinet, Georgia Nester, Marcelle E Ayad, Eric J Raes, Gert-Jan Jeunen, Allison K Miller, Philip McVey, Shannon Corrigan, Matthew Fraser, Priscila Goncalves, Stephen Burnell, Adam Bennett, Sebastian Rauschert, Philipp E Bayer

Characterizing biodiversity using environmental DNA (eDNA) represents a paradigm shift in our capacity for biomonitoring complex environments, both aquatic and terrestrial. However, eDNA biomonitoring is limited by biases toward certain species and the low taxonomic resolution of current metabarcoding approaches. Shotgun metagenomics of eDNA enables the collection of whole ecosystem data by sequencing all molecules present, allowing characterization and identification. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas)-based methods have the potential to improve the efficiency of eDNA metagenomic sequencing of low-abundant target organisms and simplify data analysis by enrichment of target species or nontarget DNA depletion before sequencing. Implementation of CRISPR-Cas in eDNA has been limited due to a lack of interest and support in the past. This perspective synthesizes current approaches of CRISPR-Cas to study underrepresented taxa and advocate for further application and optimization of depletion and enrichment methods of eDNA using CRISPR-Cas, holding promise for eDNA biomonitoring.

{"title":"Monitoring the Land and Sea: Enhancing Efficiency Through CRISPR-Cas Driven Depletion and Enrichment of Environmental DNA.","authors":"Anya Kardailsky, Benjamín Durán-Vinet, Georgia Nester, Marcelle E Ayad, Eric J Raes, Gert-Jan Jeunen, Allison K Miller, Philip McVey, Shannon Corrigan, Matthew Fraser, Priscila Goncalves, Stephen Burnell, Adam Bennett, Sebastian Rauschert, Philipp E Bayer","doi":"10.1089/crispr.2024.0050","DOIUrl":"https://doi.org/10.1089/crispr.2024.0050","url":null,"abstract":"<p><p>Characterizing biodiversity using environmental DNA (eDNA) represents a paradigm shift in our capacity for biomonitoring complex environments, both aquatic and terrestrial. However, eDNA biomonitoring is limited by biases toward certain species and the low taxonomic resolution of current metabarcoding approaches. Shotgun metagenomics of eDNA enables the collection of whole ecosystem data by sequencing all molecules present, allowing characterization and identification. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas)-based methods have the potential to improve the efficiency of eDNA metagenomic sequencing of low-abundant target organisms and simplify data analysis by enrichment of target species or nontarget DNA depletion before sequencing. Implementation of CRISPR-Cas in eDNA has been limited due to a lack of interest and support in the past. This perspective synthesizes current approaches of CRISPR-Cas to study underrepresented taxa and advocate for further application and optimization of depletion and enrichment methods of eDNA using CRISPR-Cas, holding promise for eDNA biomonitoring.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"8 1","pages":"5-12"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143451052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-Cas9-Mediated Correction of TSC2 Pathogenic Variants in iPSCs from Patients with Tuberous Sclerosis Complex Type 2. crispr - cas9介导的2型结节性硬化症患者iPSCs中TSC2致病变异的校正
IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2025-02-01 Epub Date: 2024-12-10 DOI: 10.1089/crispr.2024.0079
Gongbo Guo, Morgan Moser, Lincoln Chifamba, Dominic Julian, Samantha Teierle, Prajwal Rajappa, Cecelia Miller, Mark E Hester

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in either the TSC1 or TSC2 genes. Though TSC causes the formation of nonmalignant tumors throughout multiple organs, the most frequent causes of mortality and morbidity are due to neurological complications. In two-thirds of cases, TSC occurs sporadically and TSC2 pathogenic variants are approximately three times more prevalent than TSC1 pathogenic variants. Here, we utilized CRISPR-Cas9-mediated homology directed repair in patient induced pluripotent stem cells (iPSCs) to correct two types of TSC2 pathogenic variants generating two isogenic lines. In one line, we corrected a splice acceptor variant (c.2743-1G>A), which causes the skipping of coding exon 23 and subsequent frameshift and introduction of a stop codon in coding exon 25. In the second line, we corrected a missense variant in coding exon 40 within the GTPase-activating protein domain (c.5228G>A, p.R1743Q). The generation of TSC2 patient iPSCs in parallel with their corresponding CRISPR-corrected isogenic lines will be an important tool for disease modeling applications and for developing therapeutics.

结节性硬化症(TSC)是由TSC1或TSC2基因突变引起的常染色体显性遗传病。虽然TSC可在多个器官形成非恶性肿瘤,但最常见的死亡和发病原因是神经系统并发症。在三分之二的病例中,TSC是零星发生的,TSC2致病性变异体比TSC1致病性变异体普遍约三倍。在这里,我们利用crispr - cas9介导的同源定向修复在患者诱导的多能干细胞(iPSCs)中纠正两种类型的TSC2致病变异,产生两种等基因系。在一行中,我们纠正了一个剪接受体变异(c.2743-1G> a),该变异导致编码外显子23的跳跃和随后的移码,并在编码外显子25中引入了一个停止密码子。在第二行中,我们纠正了编码gtpase激活蛋白域内第40外显子的错义变异(c.5228G> a, p.R1743Q)。TSC2患者iPSCs的生成及其相应的crispr校正等基因系将成为疾病建模应用和开发治疗方法的重要工具。
{"title":"CRISPR-Cas9-Mediated Correction of <i>TSC2</i> Pathogenic Variants in iPSCs from Patients with Tuberous Sclerosis Complex Type 2.","authors":"Gongbo Guo, Morgan Moser, Lincoln Chifamba, Dominic Julian, Samantha Teierle, Prajwal Rajappa, Cecelia Miller, Mark E Hester","doi":"10.1089/crispr.2024.0079","DOIUrl":"10.1089/crispr.2024.0079","url":null,"abstract":"<p><p>Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in either the <i>TSC1</i> or <i>TSC2</i> genes. Though TSC causes the formation of nonmalignant tumors throughout multiple organs, the most frequent causes of mortality and morbidity are due to neurological complications. In two-thirds of cases, TSC occurs sporadically and <i>TSC2</i> pathogenic variants are approximately three times more prevalent than <i>TSC1</i> pathogenic variants. Here, we utilized CRISPR-Cas9-mediated homology directed repair in patient induced pluripotent stem cells (iPSCs) to correct two types of <i>TSC2</i> pathogenic variants generating two isogenic lines. In one line, we corrected a splice acceptor variant (c.2743-1G>A), which causes the skipping of coding exon 23 and subsequent frameshift and introduction of a stop codon in coding exon 25. In the second line, we corrected a missense variant in coding exon 40 within the GTPase-activating protein domain (c.5228G>A, p.R1743Q). The generation of TSC2 patient iPSCs in parallel with their corresponding CRISPR-corrected isogenic lines will be an important tool for disease modeling applications and for developing therapeutics.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"60-70"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax. crispr - cas9介导的亚麻基因组编辑系统的建立
IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2025-02-01 Epub Date: 2025-01-13 DOI: 10.1089/crispr.2024.0064
Chunming Wang, Chao Sun, Li Shi, Jiannan Zhou, Shuai Liu, Yongsheng Bai, Weichang Yu

Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated. The purpose of this study was to investigate the potential of genome editing in flax by establishing the clustered regularly interspaced short palindromic repeats (CR ISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) genome editing system using the phytoene desaturase (PDS) gene, which produces albino mutants that are easily identifiable. Four sgRNAs were designed from two PDS genes of Flax (LuPDS1 and LuPDS2), and CRISPR-Cas9 genome editing vectors were constructed. After gene transformation, albino phenotypes were observed in transformed callus and regenerated plantlets on selection media. Polymerase chain reaction (PCR) amplification and sequencing of the PDS genes revealed deletions and insertions in the albino tissues, indicating successful editing of the PDS genes. Potential off-target sites were analyzed, but no off-target mutations were found, indicating the specificity of the CRISPR-Cas9 system. The establishment of a flax genome editing system using the CRISPR-Cas9 technology opens up new possibilities for the genetic engineering of flax. This study demonstrates the potential of genome editing in creating elite cultivars that can be easily cultivated, which can have significant implications for the flax industry.

亚麻是一种重要的油料和纤维作物。虽然亚麻的基因工程已经实现,但并不常用于培育栽培品种。然而,基因组编辑技术可以在不引入外来基因的情况下产生特定位点的突变,它的使用可能是创造易于栽培的优良品种的重要工具。本研究的目的是通过使用植物烯去饱和酶(PDS)基因建立簇状规则间隔短回文重复序列(CR ISPR)-CRISPR相关蛋白9(CRISPR-Cas9)基因组编辑系统,研究亚麻基因组编辑的潜力,该系统可产生易于识别的白化突变体。从亚麻的两个 PDS 基因(LuPDS1 和 LuPDS2)中设计了四个 sgRNA,并构建了 CRISPR-Cas9 基因组编辑载体。基因转化后,在选择培养基上观察到转化胼胝体和再生小植株出现白化表型。聚合酶链反应(PCR)扩增和 PDS 基因测序显示,白化组织中存在缺失和插入,表明 PDS 基因编辑成功。对潜在的脱靶位点进行了分析,但没有发现脱靶突变,这表明 CRISPR-Cas9 系统具有特异性。利用CRISPR-Cas9技术建立亚麻基因组编辑系统为亚麻基因工程开辟了新的可能性。这项研究证明了基因组编辑在创造易于栽培的精英栽培品种方面的潜力,这对亚麻产业具有重大意义。
{"title":"Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax.","authors":"Chunming Wang, Chao Sun, Li Shi, Jiannan Zhou, Shuai Liu, Yongsheng Bai, Weichang Yu","doi":"10.1089/crispr.2024.0064","DOIUrl":"10.1089/crispr.2024.0064","url":null,"abstract":"<p><p>Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated. The purpose of this study was to investigate the potential of genome editing in flax by establishing the clustered regularly interspaced short palindromic repeats (CR ISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) genome editing system using the phytoene desaturase (<i>PDS</i>) gene, which produces albino mutants that are easily identifiable. Four sgRNAs were designed from two <i>PDS</i> genes of Flax (LuPDS1 and LuPDS2), and CRISPR-Cas9 genome editing vectors were constructed. After gene transformation, albino phenotypes were observed in transformed callus and regenerated plantlets on selection media. Polymerase chain reaction (PCR) amplification and sequencing of the <i>PDS</i> genes revealed deletions and insertions in the albino tissues, indicating successful editing of the <i>PDS</i> genes. Potential off-target sites were analyzed, but no off-target mutations were found, indicating the specificity of the CRISPR-Cas9 system. The establishment of a flax genome editing system using the CRISPR-Cas9 technology opens up new possibilities for the genetic engineering of flax. This study demonstrates the potential of genome editing in creating elite cultivars that can be easily cultivated, which can have significant implications for the flax industry.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"51-59"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Generation of SOCS2 Knock-Out Sheep by Electroporation of CRISPR-Cas9 Ribonucleoprotein Complex with Dual-sgRNAs. 用双sgrnas电穿孔CRISPR-Cas9核糖核蛋白复合物高效产生SOCS2基因敲除羊。
IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2025-02-01 Epub Date: 2025-01-14 DOI: 10.1089/crispr.2024.0055
Ahmed K Mahdi, Devon S Fitzpatrick, Darren E Hagen, Bret R McNabb, Tara Urbano Beach, William M Muir, Nicholas Werry, Alison L Van Eenennaam, Juan F Medrano, Pablo J Ross

In mice, naturally occurring and induced mutations in the suppressor of cytokine signaling-2 (Socs2) gene are associated with a high growth phenotype characterized by rapid post-weaning weight gain and 30-50% heavier mature body weight. In this work, we demonstrate an electroporation-based method of producing SOCS2 knock-out (KO) sheep. Electroporation of dual-guide CRISPR-Cas9 ribonucleoprotein complexes targeting SOCS2 was performed 6 h post-fertilization in sheep zygotes. Fifty-two blastocysts were transferred to 13 estrus-synchronized recipients, yielding five live lambs and one stillborn. These lambs all carried mutations predicted to result in SOCS2 KO. Three carried large deletion alleles which evaded detection in initial PCR screening. Off-target analysis using whole genome sequencing comparing the frequency of mutations in regions within 100 bp of possible sgRNA binding sites (up to 4 bp mismatches) and elsewhere in the genome showed no significant difference when comparing unedited control sheep to edited animals (p = 0.71). In conclusion, electroporation of zygotes with dual-guide CRISPR-Cas9 RNPs was effective at generating knock-out sheep with no substantial off-target activity.

在小鼠中,细胞因子信号传导抑制因子-2 (Socs2)基因的自然发生和诱导突变与高生长表型相关,其特征是断奶后体重快速增加,成熟体重增加30-50%。在这项工作中,我们展示了一种基于电穿孔的方法来生产SOCS2敲除(KO)羊。在绵羊受精卵受精后6小时电穿孔靶向SOCS2的双导CRISPR-Cas9核糖核蛋白复合物。52个囊胚被移植到13个与发情同步的受者身上,产生了5只活羊羔和1只死胎。这些羔羊都携带可导致SOCS2 KO的突变。其中3例携带大缺失等位基因,在初始PCR筛选中未被检测到。使用全基因组测序进行脱靶分析,比较在可能的sgRNA结合位点100 bp以内的区域(最多4 bp错配)和基因组中其他地方的突变频率,结果显示,未编辑的对照羊与编辑过的动物相比,没有显著差异(p = 0.71)。综上所述,用双导CRISPR-Cas9 RNPs电穿孔受精卵可以有效地产生没有明显脱靶活性的敲除绵羊。
{"title":"Efficient Generation of <i>SOCS2</i> Knock-Out Sheep by Electroporation of CRISPR-Cas9 Ribonucleoprotein Complex with Dual-sgRNAs.","authors":"Ahmed K Mahdi, Devon S Fitzpatrick, Darren E Hagen, Bret R McNabb, Tara Urbano Beach, William M Muir, Nicholas Werry, Alison L Van Eenennaam, Juan F Medrano, Pablo J Ross","doi":"10.1089/crispr.2024.0055","DOIUrl":"10.1089/crispr.2024.0055","url":null,"abstract":"<p><p>In mice, naturally occurring and induced mutations in the suppressor of cytokine signaling-2 (<i>Socs2</i>) gene are associated with a high growth phenotype characterized by rapid post-weaning weight gain and 30-50% heavier mature body weight. In this work, we demonstrate an electroporation-based method of producing <i>SOCS2</i> knock-out (KO) sheep. Electroporation of dual-guide CRISPR-Cas9 ribonucleoprotein complexes targeting <i>SOCS2</i> was performed 6 h post-fertilization in sheep zygotes. Fifty-two blastocysts were transferred to 13 estrus-synchronized recipients, yielding five live lambs and one stillborn. These lambs all carried mutations predicted to result in <i>SOCS2</i> KO. Three carried large deletion alleles which evaded detection in initial PCR screening. Off-target analysis using whole genome sequencing comparing the frequency of mutations in regions within 100 bp of possible sgRNA binding sites (up to 4 bp mismatches) and elsewhere in the genome showed no significant difference when comparing unedited control sheep to edited animals (<i>p</i> = 0.71). In conclusion, electroporation of zygotes with dual-guide CRISPR-Cas9 RNPs was effective at generating knock-out sheep with no substantial off-target activity.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"13-25"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
CRISPR Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1