Performance of tropical cyclone forecasts in the western North Pacific in 2017

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Tropical Cyclone Research and Review Pub Date : 2021-03-01 DOI:10.1016/j.tcrr.2021.03.002
Guomin Chen , Xiping Zhang , Mengqi Yang , Hui Yu , Qing Cao
{"title":"Performance of tropical cyclone forecasts in the western North Pacific in 2017","authors":"Guomin Chen ,&nbsp;Xiping Zhang ,&nbsp;Mengqi Yang ,&nbsp;Hui Yu ,&nbsp;Qing Cao","doi":"10.1016/j.tcrr.2021.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>The forecasts of tropical cyclones (TC) in 2017 from five official guides, six global models, six regional models and six ensemble systems were assessed to study the current capability of track and intensity forecasts for the western North Pacific. The results show that the position errors for official agencies were under 100, 165, 265,335 and 425 km at the lead times of 24, 48, 72, 96 and 120 h, respectively. As the forecast lead times increased, the forecasted TCs propagated, on average, too slow for most official guides. It is encouraging to note that all the models had positive skill scores, there is an overall upward trend in the skill scores of the models during from 2010 to 2017. Furthermore, both global and regional models' intensity forecast skill was increasing year by year from 2010 to 2017. For the ensemble prediction systems (EPSs), ECMWF-EPS was the best forecast system for the lead time less than 72 h, beyond the 72 h, the best EPS belong to NCEP-GEFS.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"10 1","pages":"Pages 1-15"},"PeriodicalIF":2.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tcrr.2021.03.002","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603221000023","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 5

Abstract

The forecasts of tropical cyclones (TC) in 2017 from five official guides, six global models, six regional models and six ensemble systems were assessed to study the current capability of track and intensity forecasts for the western North Pacific. The results show that the position errors for official agencies were under 100, 165, 265,335 and 425 km at the lead times of 24, 48, 72, 96 and 120 h, respectively. As the forecast lead times increased, the forecasted TCs propagated, on average, too slow for most official guides. It is encouraging to note that all the models had positive skill scores, there is an overall upward trend in the skill scores of the models during from 2010 to 2017. Furthermore, both global and regional models' intensity forecast skill was increasing year by year from 2010 to 2017. For the ensemble prediction systems (EPSs), ECMWF-EPS was the best forecast system for the lead time less than 72 h, beyond the 72 h, the best EPS belong to NCEP-GEFS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2017年北太平洋西部热带气旋预报的表现
评估了五个官方指南、六个全球模式、六个区域模式和六个集合系统对2017年热带气旋的预测,以研究目前北太平洋西部的路径和强度预测能力。结果表明,在提前24、48、72、96和120 h时,官方机构的位置误差分别在100、165、265,335和425 km 以下。随着预测提前期的增加,预测的tc传播速度对大多数官方指南来说太慢了。令人鼓舞的是,所有模型的技能得分均为正,从2010年到2017年,模型的技能得分总体呈上升趋势。2010 - 2017年,全球和区域模式的强度预测能力均呈逐年上升趋势。对于集合预报系统(EPS), ECMWF-EPS在提前期小于72 h时预报效果最好,超过72 h时预报效果最好的是NCEP-GEFS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
期刊最新文献
Discussion on the enhancement of Typhoon Committee activities for UN EW4All initiative Analyzing coherent structures in the tropical cyclone boundary layer using large eddy simulations Analysis of characteristics and evaluation of forecast accuracy for Super Typhoon Doksuri (2023) Case study of high waves in the South Pacific generated by Tropical Cyclone Harold in 2020 A theoretical method to characterize the resistance effects of nonflat terrain on wind fields in a parametric wind field model for tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1