A. Zheng , N. Huang , D. Bean , S. Rayapaneni , Jude Deeney , M. Sagar , James A. Hamilton
{"title":"Resolvin E1 heals injured cardiomyocytes: Therapeutic implications and H-FABP as a readout for cardiovascular disease & systemic inflammation","authors":"A. Zheng , N. Huang , D. Bean , S. Rayapaneni , Jude Deeney , M. Sagar , James A. Hamilton","doi":"10.1016/j.plefa.2023.102586","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study is to investigate heart-fatty acid binding protein (H-FABP) leakage from cardiomyocytes as a quantitative measure of cell membrane damage and to test healing by Resolvin E1 (RVE1) as a potential therapeutic for patients with inflammatory diseases (cardiovascular disease and comorbidities) with high morbidity and mortality. Our quantitative ELISA assays demonstrated H-FABP as a sensitive and reliable biomarker for measuring cardiomyocyte damage induced by lipopolysaccharide (LPS) and healing by RvE1, a specialized pro-resolving mediator (SPM) derived from the Omega-3 fatty acid, eicosapentaenoic acid (EPA), a dietary nutrient that balances inflammation to restore homeostasis. RvE1 reduced leakage of H-FABP by up to 86%, which supports our hypothesis that inflammation as a mechanism of injury can be targeted for therapy. H-FABP as a blood biomarker was tested in 40 patients admitted to Boston Medical Center for respiratory distress, (20 patients with and 20 patients without COVID infection). High levels of H-FABP correlated with clinically diagnosed CVD, diabetes, and end-stage renal disease (ESRD) in both patient groups. The level of H-FABP indicates not only CVD damage but is a valuable measure for patients with increased inflammation disease comorbidities.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":"197 ","pages":"Article 102586"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952327823000558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to investigate heart-fatty acid binding protein (H-FABP) leakage from cardiomyocytes as a quantitative measure of cell membrane damage and to test healing by Resolvin E1 (RVE1) as a potential therapeutic for patients with inflammatory diseases (cardiovascular disease and comorbidities) with high morbidity and mortality. Our quantitative ELISA assays demonstrated H-FABP as a sensitive and reliable biomarker for measuring cardiomyocyte damage induced by lipopolysaccharide (LPS) and healing by RvE1, a specialized pro-resolving mediator (SPM) derived from the Omega-3 fatty acid, eicosapentaenoic acid (EPA), a dietary nutrient that balances inflammation to restore homeostasis. RvE1 reduced leakage of H-FABP by up to 86%, which supports our hypothesis that inflammation as a mechanism of injury can be targeted for therapy. H-FABP as a blood biomarker was tested in 40 patients admitted to Boston Medical Center for respiratory distress, (20 patients with and 20 patients without COVID infection). High levels of H-FABP correlated with clinically diagnosed CVD, diabetes, and end-stage renal disease (ESRD) in both patient groups. The level of H-FABP indicates not only CVD damage but is a valuable measure for patients with increased inflammation disease comorbidities.