Xiaomeng Wang, Sabu Abraham, Jenny A. G. McKenzie, Natasha Jeffs, Matthew Swire, Vineeta B. Tripathi, Ulrich F. O. Luhmann, Clemens A. K. Lange, Zhenhua Zhai, Helen M. Arthur, James W. B. Bainbridge, Stephen E. Moss, John Greenwood
{"title":"LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling","authors":"Xiaomeng Wang, Sabu Abraham, Jenny A. G. McKenzie, Natasha Jeffs, Matthew Swire, Vineeta B. Tripathi, Ulrich F. O. Luhmann, Clemens A. K. Lange, Zhenhua Zhai, Helen M. Arthur, James W. B. Bainbridge, Stephen E. Moss, John Greenwood","doi":"10.1038/nature12345","DOIUrl":null,"url":null,"abstract":"Aberrant neovascularization contributes to diseases such as cancer, blindness and atherosclerosis, and is the consequence of inappropriate angiogenic signalling. Although many regulators of pathogenic angiogenesis have been identified, our understanding of this process is incomplete. Here we explore the transcriptome of retinal microvessels isolated from mouse models of retinal disease that exhibit vascular pathology, and uncover an upregulated gene, leucine-rich alpha-2-glycoprotein 1 (Lrg1), of previously unknown function. We show that in the presence of transforming growth factor-β1 (TGF-β1), LRG1 is mitogenic to endothelial cells and promotes angiogenesis. Mice lacking Lrg1 develop a mild retinal vascular phenotype but exhibit a significant reduction in pathological ocular angiogenesis. LRG1 binds directly to the TGF-β accessory receptor endoglin, which, in the presence of TGF-β1, results in promotion of the pro-angiogenic Smad1/5/8 signalling pathway. LRG1 antibody blockade inhibits this switch and attenuates angiogenesis. These studies reveal a new regulator of angiogenesis that mediates its effect by modulating TGF-β signalling. LRG1 is identified as a new regulator of TGF-β signalling that promotes angiogenesis via a TβRII–ALK1–ENG–Smad1/5/8 signalling pathway; antibody-mediated inhibition of LRG1 reduces pathogenic neovascularization in a mouse model of retinal injury. Defective angiogenesis is a common feature in many diseases including age-related macular degeneration, atherosclerosis, rheumatoid arthritis and cancer. Here John Greenwood and colleagues identify a novel angiogenic glycoprotein of previously unknown function — leucine-rich-alpha-2-glycoprotein 1 (LRG1) — that exerts its effect through modifying TGF-β signalling. LRG1, upregulated in vitreous samples from humans with proliferative diabetic retinopathy, activates an angiogenic switch by binding to the receptor endoglin and promoting pro-angiogenic TGF-β signalling. Antibody-mediated inhibition of LRG1 reduces pathogenic neovascularization in a mouse model of retinal injury, which suggests that LRG1 is a possible therapeutic target for controlling pathological angiogenesis in ocular disease.","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2013-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/nature12345","citationCount":"347","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/nature12345","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 347
Abstract
Aberrant neovascularization contributes to diseases such as cancer, blindness and atherosclerosis, and is the consequence of inappropriate angiogenic signalling. Although many regulators of pathogenic angiogenesis have been identified, our understanding of this process is incomplete. Here we explore the transcriptome of retinal microvessels isolated from mouse models of retinal disease that exhibit vascular pathology, and uncover an upregulated gene, leucine-rich alpha-2-glycoprotein 1 (Lrg1), of previously unknown function. We show that in the presence of transforming growth factor-β1 (TGF-β1), LRG1 is mitogenic to endothelial cells and promotes angiogenesis. Mice lacking Lrg1 develop a mild retinal vascular phenotype but exhibit a significant reduction in pathological ocular angiogenesis. LRG1 binds directly to the TGF-β accessory receptor endoglin, which, in the presence of TGF-β1, results in promotion of the pro-angiogenic Smad1/5/8 signalling pathway. LRG1 antibody blockade inhibits this switch and attenuates angiogenesis. These studies reveal a new regulator of angiogenesis that mediates its effect by modulating TGF-β signalling. LRG1 is identified as a new regulator of TGF-β signalling that promotes angiogenesis via a TβRII–ALK1–ENG–Smad1/5/8 signalling pathway; antibody-mediated inhibition of LRG1 reduces pathogenic neovascularization in a mouse model of retinal injury. Defective angiogenesis is a common feature in many diseases including age-related macular degeneration, atherosclerosis, rheumatoid arthritis and cancer. Here John Greenwood and colleagues identify a novel angiogenic glycoprotein of previously unknown function — leucine-rich-alpha-2-glycoprotein 1 (LRG1) — that exerts its effect through modifying TGF-β signalling. LRG1, upregulated in vitreous samples from humans with proliferative diabetic retinopathy, activates an angiogenic switch by binding to the receptor endoglin and promoting pro-angiogenic TGF-β signalling. Antibody-mediated inhibition of LRG1 reduces pathogenic neovascularization in a mouse model of retinal injury, which suggests that LRG1 is a possible therapeutic target for controlling pathological angiogenesis in ocular disease.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.