Atul Deshpande, Melanie Loth, Dimitrios N Sidiropoulos, Shuming Zhang, Long Yuan, Alexander T F Bell, Qingfeng Zhu, Won Jin Ho, Cesar Santa-Maria, Daniele M Gilkes, Stephen R Williams, Cedric R Uytingco, Jennifer Chew, Andrej Hartnett, Zachary W Bent, Alexander V Favorov, Aleksander S Popel, Mark Yarchoan, Ashley Kiemen, Pei-Hsun Wu, Kohei Fujikura, Denis Wirtz, Laura D Wood, Lei Zheng, Elizabeth M Jaffee, Robert A Anders, Ludmila Danilova, Genevieve Stein-O'Brien, Luciane T Kagohara, Elana J Fertig
{"title":"Uncovering the spatial landscape of molecular interactions within the tumor microenvironment through latent spaces.","authors":"Atul Deshpande, Melanie Loth, Dimitrios N Sidiropoulos, Shuming Zhang, Long Yuan, Alexander T F Bell, Qingfeng Zhu, Won Jin Ho, Cesar Santa-Maria, Daniele M Gilkes, Stephen R Williams, Cedric R Uytingco, Jennifer Chew, Andrej Hartnett, Zachary W Bent, Alexander V Favorov, Aleksander S Popel, Mark Yarchoan, Ashley Kiemen, Pei-Hsun Wu, Kohei Fujikura, Denis Wirtz, Laura D Wood, Lei Zheng, Elizabeth M Jaffee, Robert A Anders, Ludmila Danilova, Genevieve Stein-O'Brien, Luciane T Kagohara, Elana J Fertig","doi":"10.1016/j.cels.2023.03.004","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in spatial transcriptomics (STs) enable gene expression measurements from a tissue sample while retaining its spatial context. This technology enables unprecedented in situ resolution of the regulatory pathways that underlie the heterogeneity in the tumor as well as the tumor microenvironment (TME). The direct characterization of cellular co-localization with spatial technologies facilities quantification of the molecular changes resulting from direct cell-cell interaction, as it occurs in tumor-immune interactions. We present SpaceMarkers, a bioinformatics algorithm to infer molecular changes from cell-cell interactions from latent space analysis of ST data. We apply this approach to infer the molecular changes from tumor-immune interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, and immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled further quantification of the specific cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the location and context-specific molecular interactions within the TME from ST data.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 4","pages":"285-301.e4"},"PeriodicalIF":9.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.03.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in spatial transcriptomics (STs) enable gene expression measurements from a tissue sample while retaining its spatial context. This technology enables unprecedented in situ resolution of the regulatory pathways that underlie the heterogeneity in the tumor as well as the tumor microenvironment (TME). The direct characterization of cellular co-localization with spatial technologies facilities quantification of the molecular changes resulting from direct cell-cell interaction, as it occurs in tumor-immune interactions. We present SpaceMarkers, a bioinformatics algorithm to infer molecular changes from cell-cell interactions from latent space analysis of ST data. We apply this approach to infer the molecular changes from tumor-immune interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, and immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled further quantification of the specific cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the location and context-specific molecular interactions within the TME from ST data.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.