Courtney Aul, Julia M Brau, Alexander Sugarman, Joseph M DeGutis, Laura T Germine, Michael Esterman, Regina E McGlinchey, Francesca C Fortenbaugh
{"title":"The functional relevance of visuospatial processing speed across the lifespan.","authors":"Courtney Aul, Julia M Brau, Alexander Sugarman, Joseph M DeGutis, Laura T Germine, Michael Esterman, Regina E McGlinchey, Francesca C Fortenbaugh","doi":"10.1186/s41235-023-00504-y","DOIUrl":null,"url":null,"abstract":"<p><p>Visuospatial processing speed underlies several cognitive functions critical for successful completion of everyday tasks, including driving and walking. While it is widely accepted that visuospatial processing speed peaks in early adulthood, performance across the lifespan remains incompletely characterized. Additionally, there remains a lack of paradigms available to assess visuospatial processing speed in unsupervised web-based testing environments. To address these gaps, we developed a novel visuospatial processing speed (VIPS) task adapted from two tests sensitive to visuospatial processing speed declines in older adults, the Useful Field of View paradigm and the PERformance CEntered Portable Test. The VIPS task requires participants to make a central orientation discrimination and complete a simultaneous peripheral visual search task. Data were collected from 86 in-lab volunteers (18-30 years) to compare performance to traditional neuropsychological measures. Consistent with previous literature, performance on the novel VIPS task significantly correlated with measures of selective attention, executive functioning, visual speed, and working memory. An additional 4395 volunteers (12-62 years) were recruited on TestMyBrain.org to establish lifespan trajectories of visuospatial processing speed and associations with functional disability. VIPS task performance peaked in the early 20's, and steadily decreased such that thresholds doubled in 60-year-olds relative to 20-year-olds (817 ms vs. 412 ms). VIPS task performance significantly correlated with self-reported cognitive functioning deficits broadly across the lifespan but was specifically related to mobility issues in middle-age. These findings have important implications for early detection of cognitive decline and provide insights into potential early intervention targets for younger and middle-aged adults.</p>","PeriodicalId":46827,"journal":{"name":"Cognitive Research-Principles and Implications","volume":"8 1","pages":"51"},"PeriodicalIF":3.4000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Research-Principles and Implications","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1186/s41235-023-00504-y","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Visuospatial processing speed underlies several cognitive functions critical for successful completion of everyday tasks, including driving and walking. While it is widely accepted that visuospatial processing speed peaks in early adulthood, performance across the lifespan remains incompletely characterized. Additionally, there remains a lack of paradigms available to assess visuospatial processing speed in unsupervised web-based testing environments. To address these gaps, we developed a novel visuospatial processing speed (VIPS) task adapted from two tests sensitive to visuospatial processing speed declines in older adults, the Useful Field of View paradigm and the PERformance CEntered Portable Test. The VIPS task requires participants to make a central orientation discrimination and complete a simultaneous peripheral visual search task. Data were collected from 86 in-lab volunteers (18-30 years) to compare performance to traditional neuropsychological measures. Consistent with previous literature, performance on the novel VIPS task significantly correlated with measures of selective attention, executive functioning, visual speed, and working memory. An additional 4395 volunteers (12-62 years) were recruited on TestMyBrain.org to establish lifespan trajectories of visuospatial processing speed and associations with functional disability. VIPS task performance peaked in the early 20's, and steadily decreased such that thresholds doubled in 60-year-olds relative to 20-year-olds (817 ms vs. 412 ms). VIPS task performance significantly correlated with self-reported cognitive functioning deficits broadly across the lifespan but was specifically related to mobility issues in middle-age. These findings have important implications for early detection of cognitive decline and provide insights into potential early intervention targets for younger and middle-aged adults.