Janelle J Badger, W Don Bowen, Cornelia E den Heyer, Greg A Breed
{"title":"Individual Quality Drives Life History Variation in a Long-Lived Marine Predator.","authors":"Janelle J Badger, W Don Bowen, Cornelia E den Heyer, Greg A Breed","doi":"10.1086/725451","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractIndividual quality and environmental conditions may mask or interact with energetic trade-offs in life history evolution. Deconstructing these sources of variation is especially difficult in long-lived species that are rarely observed on timescales long enough to disentangle these effects. Here, we investigated relative support for variation in female quality and costs of reproduction as factors shaping differences in life history trajectories using a 32-year dataset of repeated reproductive measurements from 273 marked, known-age female gray seals (<i>Halichoerus grypus</i>). We defined individual reproductive investment using two traits, reproductive frequency (a female's probability of breeding) and provisioning performance (offspring weaning mass). Fitted hierarchical Bayesian models identified individual investment relative to conspecifics (over a female's entire life and in three age classes) and subsequently estimated how these investment metrics and the Atlantic Multidecadal Oscillation are associated with longevity. Individual differences (i.e., quality) contributed a large portion of the variance in reproductive traits. Females that consistently invest well in their offspring relative to other females survive longer. The best-supported model estimated survival as a function of age class-specific provisioning performance, where late-life performance was particularly variable and had the greatest impact on survival, possibly indicating individual variation in senescence. There was no evidence to support a trade-off in reproductive performance and survival at the individual level. Overall, these results suggest that in gray seals, individual quality is a stronger driver in life history variation than individual strategies resulting from energetic trade-offs.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"202 3","pages":"351-367"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/725451","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractIndividual quality and environmental conditions may mask or interact with energetic trade-offs in life history evolution. Deconstructing these sources of variation is especially difficult in long-lived species that are rarely observed on timescales long enough to disentangle these effects. Here, we investigated relative support for variation in female quality and costs of reproduction as factors shaping differences in life history trajectories using a 32-year dataset of repeated reproductive measurements from 273 marked, known-age female gray seals (Halichoerus grypus). We defined individual reproductive investment using two traits, reproductive frequency (a female's probability of breeding) and provisioning performance (offspring weaning mass). Fitted hierarchical Bayesian models identified individual investment relative to conspecifics (over a female's entire life and in three age classes) and subsequently estimated how these investment metrics and the Atlantic Multidecadal Oscillation are associated with longevity. Individual differences (i.e., quality) contributed a large portion of the variance in reproductive traits. Females that consistently invest well in their offspring relative to other females survive longer. The best-supported model estimated survival as a function of age class-specific provisioning performance, where late-life performance was particularly variable and had the greatest impact on survival, possibly indicating individual variation in senescence. There was no evidence to support a trade-off in reproductive performance and survival at the individual level. Overall, these results suggest that in gray seals, individual quality is a stronger driver in life history variation than individual strategies resulting from energetic trade-offs.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.