{"title":"Population Rescue through an Increase in the Selfing Rate under Pollen Limitation: Plasticity versus Evolution.","authors":"Kuangyi Xu","doi":"10.1086/725425","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractIncreased rates of self-fertilization offer reproductive assurance when plant populations experience pollen limitation, but self-fertilization may reduce fitness by exposing deleterious mutations. If an environmental change responsible for pollen limitation also induces plastic mating system shifts toward self-pollination, the reproductive assurance benefit and inbreeding depression cost of increased self-fertilization occur immediately, while the benefit and cost happen more gradually when increased self-fertilization occur through evolution. I built eco-evolutionary models to explore the demographic and genetic conditions in which higher self-fertilization by plasticity and/or evolution rescues populations, following deficits due to a sudden onset of pollen limitation. Rescue is most likely under an intermediate level of selfing rate increase, either through plasticity or evolution, and this critical level of selfing rate increase is higher under stronger pollen limitation. Generally, rescue is more likely through plasticity than through evolution. Under weak pollen limitation, rescue by enhanced self-fertilization may mainly occur through purging of deleterious mutations rather than reproductive assurance. The selfing rate increase conferring the highest rescue probability is lower when the initial population size is smaller. This article shows the importance of plasticity during plant population rescue and offers insights for future studies of the evolution of mating system plasticity.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"202 3","pages":"337-350"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/725425","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractIncreased rates of self-fertilization offer reproductive assurance when plant populations experience pollen limitation, but self-fertilization may reduce fitness by exposing deleterious mutations. If an environmental change responsible for pollen limitation also induces plastic mating system shifts toward self-pollination, the reproductive assurance benefit and inbreeding depression cost of increased self-fertilization occur immediately, while the benefit and cost happen more gradually when increased self-fertilization occur through evolution. I built eco-evolutionary models to explore the demographic and genetic conditions in which higher self-fertilization by plasticity and/or evolution rescues populations, following deficits due to a sudden onset of pollen limitation. Rescue is most likely under an intermediate level of selfing rate increase, either through plasticity or evolution, and this critical level of selfing rate increase is higher under stronger pollen limitation. Generally, rescue is more likely through plasticity than through evolution. Under weak pollen limitation, rescue by enhanced self-fertilization may mainly occur through purging of deleterious mutations rather than reproductive assurance. The selfing rate increase conferring the highest rescue probability is lower when the initial population size is smaller. This article shows the importance of plasticity during plant population rescue and offers insights for future studies of the evolution of mating system plasticity.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.