Karla J.P. Silva-Souza , Maíra G. Pivato , Vinícius C. Silva , Ricardo F. Haidar , Alexandre F. Souza
{"title":"New patterns of the tree beta diversity and its determinants in the largest savanna and wetland biomes of South America","authors":"Karla J.P. Silva-Souza , Maíra G. Pivato , Vinícius C. Silva , Ricardo F. Haidar , Alexandre F. Souza","doi":"10.1016/j.pld.2022.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>Clear and data-driven bioregionalizations can provide a framework to test hypotheses and base biodiversity conservation. Here we used occurrence and abundance data in combination with objective analytical methods to propose two bioregionalization schemes for tree species of the Cerrado and the Pantanal in South America. We also evaluated the contribution of three sets of determinants of the occurrence- and abundance-based subregions. We compiled data on tree species composition from 894 local assemblages based on species occurrences, and from 658 local assemblages based on species abundances. We used an unconstrained community-level modelling approach and clustering techniques to identify and map tree subregions for the occurrence and the abundance data sets, separately. Hierarchical clustering analyses were conducted to investigate floristic affinities between the subregions and to map broader floristic regions. We used multinomial logistic regression models, deviance partitioning, and rank-sum tests to assess the main subregion correlates. We identified 18 occurrence- and four abundance-based subregions in the Cerrado-Pantanal. The hierarchical classifications grouped the occurrence-based subregions into nine floristic zones and abundance-based subregions into two broad floristic zones. Variation in subregions were explained mainly by environmental factors and spatial structure in both occurrence and abundance data sets. The occurrence- and abundance-based subregions are complementary approaches to disentangle macroecological patterns and to plan conservation efforts in the Cerrado and the Pantanal. Our findings based on occurrence data revealed more complex and interdigitated boundaries between subregions of tree species than previously reported. The environment, historical stability, and human effects act in a synergetic way on the distribution of the subregions. Finally, the relevance of contemporary environmental factors to the subregion patterns we found alert us to the profound impact global warming may have on the spatial organization of the Cerrado-Pantanal tree flora.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 4","pages":"Pages 369-384"},"PeriodicalIF":4.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e0/b8/main.PMC10435914.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468265922000993","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
Clear and data-driven bioregionalizations can provide a framework to test hypotheses and base biodiversity conservation. Here we used occurrence and abundance data in combination with objective analytical methods to propose two bioregionalization schemes for tree species of the Cerrado and the Pantanal in South America. We also evaluated the contribution of three sets of determinants of the occurrence- and abundance-based subregions. We compiled data on tree species composition from 894 local assemblages based on species occurrences, and from 658 local assemblages based on species abundances. We used an unconstrained community-level modelling approach and clustering techniques to identify and map tree subregions for the occurrence and the abundance data sets, separately. Hierarchical clustering analyses were conducted to investigate floristic affinities between the subregions and to map broader floristic regions. We used multinomial logistic regression models, deviance partitioning, and rank-sum tests to assess the main subregion correlates. We identified 18 occurrence- and four abundance-based subregions in the Cerrado-Pantanal. The hierarchical classifications grouped the occurrence-based subregions into nine floristic zones and abundance-based subregions into two broad floristic zones. Variation in subregions were explained mainly by environmental factors and spatial structure in both occurrence and abundance data sets. The occurrence- and abundance-based subregions are complementary approaches to disentangle macroecological patterns and to plan conservation efforts in the Cerrado and the Pantanal. Our findings based on occurrence data revealed more complex and interdigitated boundaries between subregions of tree species than previously reported. The environment, historical stability, and human effects act in a synergetic way on the distribution of the subregions. Finally, the relevance of contemporary environmental factors to the subregion patterns we found alert us to the profound impact global warming may have on the spatial organization of the Cerrado-Pantanal tree flora.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry