Pub Date : 2024-09-07eCollection Date: 2024-11-01DOI: 10.1016/j.pld.2024.09.001
Sheng-Lan Xu, Tatiana Kodrul, Mikhail S Romanov, Alexey V F Ch Bobrov, Natalia Maslova, Shu-Feng Li, Qiong-Yao Fu, Wei-Ye Huang, Cheng Quan, Jian-Hua Jin, Lu-Liang Huang
•Three types of Symplocos from the late Oligocene and Miocene of Guangxi showcase the diversity of Symplocos during this time.•Earliest Asian megafossils of Symplocos are from the late Oligocene of Nanning Basin, Guangxi, China.•Fossils and modeling reveal Symplocos was quite diverse and has persisted at low latitudes within Asia since late Oligocene.•Climate probably plays a crucial role in driving the diversification of Symplocos in low latitudes of Asia.
{"title":"Diversity of <i>Symplocos</i> (Symplocaceae, Ericales) at low latitudes in Asia during late Oligocene and Miocene.","authors":"Sheng-Lan Xu, Tatiana Kodrul, Mikhail S Romanov, Alexey V F Ch Bobrov, Natalia Maslova, Shu-Feng Li, Qiong-Yao Fu, Wei-Ye Huang, Cheng Quan, Jian-Hua Jin, Lu-Liang Huang","doi":"10.1016/j.pld.2024.09.001","DOIUrl":"10.1016/j.pld.2024.09.001","url":null,"abstract":"<p><p>•Three types of <i>Symplocos</i> from the late Oligocene and Miocene of Guangxi showcase the diversity of <i>Symplocos</i> during this time.•Earliest Asian megafossils of <i>Symplocos</i> are from the late Oligocene of Nanning Basin, Guangxi, China.•Fossils and modeling reveal <i>Symplocos</i> was quite diverse and has persisted at low latitudes within Asia since late Oligocene.•Climate probably plays a crucial role in driving the diversification of <i>Symplocos</i> in low latitudes of Asia.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 6","pages":"812-816"},"PeriodicalIF":4.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Indo-Burma Biodiversity Hotspot is renowned for its rich biodiversity, including that of vascular plants. However, the fern diversity and its endemism in this hotspot have not been well understood and so far, the diversity of very few groups of ferns in this region has been explored using combined molecular and morphological approaches. Here, we updated the plastid phylogeny of the Java fern genus Leptochilus with 226 (115% increase of the latest sampling) samples across the distribution range, specifically those of three phylogenetically significant species, Leptochilus ovatus, L. pedunculatus, and L. pothifolius. We also reconstructed the first nuclear phylogeny of the genus based on pgiC gene data. Based on molecular and morphological evidence, we identified three new major clades and six new subclades, redefined three existing species, discovered a number of cryptic species of the genus, and elucidated the evolution of the three most variable characters. Our divergence time analyses and ancestral area reconstruction showed that Leptochilus originated in the Oligocene and diversified from early Miocene and 15 dispersal events from lower to higher latitudes are identified. The evolution of three most important morphological characters is analyzed in a context of the new phylogeny. Our analysis showed that 30 (59% of total 51) species of Leptochilus occur in Indo-Burma hotspot, 24 (80% of the 30 species) of which are endemic to this hotspot. We argue that the Indo-Burma hotspot should be recognized as a diversity hotspot for ferns.
{"title":"The Indo-Burma biodiversity hotspot for ferns: Updated phylogeny, hidden diversity, and biogeography of the java fern genus <i>Leptochilus</i> (Polypodiaceae).","authors":"Liang Zhang, Zhen-Long Liang, Xue-Ping Fan, Ngan Thi Lu, Xin-Mao Zhou, Hong-Jin Wei, Li-Bing Zhang","doi":"10.1016/j.pld.2024.08.005","DOIUrl":"10.1016/j.pld.2024.08.005","url":null,"abstract":"<p><p>The Indo-Burma Biodiversity Hotspot is renowned for its rich biodiversity, including that of vascular plants. However, the fern diversity and its endemism in this hotspot have not been well understood and so far, the diversity of very few groups of ferns in this region has been explored using combined molecular and morphological approaches. Here, we updated the plastid phylogeny of the Java fern genus <i>Leptochilus</i> with 226 (115% increase of the latest sampling) samples across the distribution range, specifically those of three phylogenetically significant species, <i>Leptochilus ovatus</i>, <i>L</i>. <i>pedunculatus</i>, and <i>L</i>. <i>pothifolius</i>. We also reconstructed the first nuclear phylogeny of the genus based on <i>pgiC</i> gene data. Based on molecular and morphological evidence, we identified three new major clades and six new subclades, redefined three existing species, discovered a number of cryptic species of the genus, and elucidated the evolution of the three most variable characters. Our divergence time analyses and ancestral area reconstruction showed that <i>Leptochilus</i> originated in the Oligocene and diversified from early Miocene and 15 dispersal events from lower to higher latitudes are identified. The evolution of three most important morphological characters is analyzed in a context of the new phylogeny. Our analysis showed that 30 (59% of total 51) species of <i>Leptochilus</i> occur in Indo-Burma hotspot, 24 (80% of the 30 species) of which are endemic to this hotspot. We argue that the Indo-Burma hotspot should be recognized as a diversity hotspot for ferns.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 6","pages":"698-712"},"PeriodicalIF":4.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05eCollection Date: 2024-11-01DOI: 10.1016/j.pld.2024.08.002
Miao Liu, Tiancai Zhou, Quansheng Fu
Leaf nitrogen (N) and phosphorus (P) levels provide critical strategies for plant adaptions to changing environments. However, it is unclear whether leaf N and P levels of different plant functional groups (e.g., monocots and dicots) respond to environmental gradients in a generalizable pattern. Here, we used a global database of leaf N and P to determine whether monocots and dicots might have evolved contrasting strategies to balance N and P in response to changes in climate and soil nutrient availability. Specifically, we characterized global patterns of leaf N, P and N/P ratio in monocots and dicots, and explored the sensitivity of stoichiometry to environment factors in these plants. Our results indicate that leaf N and P levels responded to environmental factors differently in monocots than in dicots. In dicots, variations of leaf N, P and N/P ratio were significantly correlated to temperature and precipitation. In monocots, leaf N/P ratio was not significantly affected by temperature or precipitation. This indicates that leaf N, P and N/P ratio are less sensitive to environmental dynamics in monocots. We also found that in both monocots and dicots N/P ratios are associated with the availability of soil total P rather than soil total N, indicating that P limitation on plant growth is pervasive globally. In addition, there were significant phylogenetic signals for leaf N (λ = 0.65), P (λ = 0.57) and N/P ratio (λ = 0.46) in dicots, however, only significant phylogenetic signals for leaf P in monocots. Taken together, our findings indicate that monocots exhibit a "conservative" strategy (high stoichiometric homeostasis and weak phylogenetic signals in stoichiometry) to maintain their growth in stressful conditions with lower water and soil nutrients. In contrast, dicots exhibit lower stoichiometric homeostasis in changing environments because of their wide climate-soil niches and significant phylogenetic signals in stoichiometry.
{"title":"Leaf nitrogen and phosphorus are more sensitive to environmental factors in dicots than in monocots, globally.","authors":"Miao Liu, Tiancai Zhou, Quansheng Fu","doi":"10.1016/j.pld.2024.08.002","DOIUrl":"10.1016/j.pld.2024.08.002","url":null,"abstract":"<p><p>Leaf nitrogen (N) and phosphorus (P) levels provide critical strategies for plant adaptions to changing environments. However, it is unclear whether leaf N and P levels of different plant functional groups (e.g., monocots and dicots) respond to environmental gradients in a generalizable pattern. Here, we used a global database of leaf N and P to determine whether monocots and dicots might have evolved contrasting strategies to balance N and P in response to changes in climate and soil nutrient availability. Specifically, we characterized global patterns of leaf N, P and N/P ratio in monocots and dicots, and explored the sensitivity of stoichiometry to environment factors in these plants. Our results indicate that leaf N and P levels responded to environmental factors differently in monocots than in dicots. In dicots, variations of leaf N, P and N/P ratio were significantly correlated to temperature and precipitation. In monocots, leaf N/P ratio was not significantly affected by temperature or precipitation. This indicates that leaf N, P and N/P ratio are less sensitive to environmental dynamics in monocots. We also found that in both monocots and dicots N/P ratios are associated with the availability of soil total P rather than soil total N, indicating that P limitation on plant growth is pervasive globally. In addition, there were significant phylogenetic signals for leaf N (λ = 0.65), P (λ = 0.57) and N/P ratio (λ = 0.46) in dicots, however, only significant phylogenetic signals for leaf P in monocots. Taken together, our findings indicate that monocots exhibit a \"conservative\" strategy (high stoichiometric homeostasis and weak phylogenetic signals in stoichiometry) to maintain their growth in stressful conditions with lower water and soil nutrients. In contrast, dicots exhibit lower stoichiometric homeostasis in changing environments because of their wide climate-soil niches and significant phylogenetic signals in stoichiometry.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 6","pages":"804-811"},"PeriodicalIF":4.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21eCollection Date: 2024-11-01DOI: 10.1016/j.pld.2024.06.003
Han-Ning Duan, Yin-Zi Jiang, Jun-Bo Yang, Jie Cai, Jian-Li Zhao, Lu Li, Xiang-Qin Yu
Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate. In this study, we used Skmer to identify species based on genomic skims of 47 individuals representing 10 out of 13 species of Schima (Theaceae) from China. The unassembled reads identified six species, with a species identification rate of 60%, twice as high as previous efforts that used plastid genomes (27.27%). In addition, Skmer was able to identify Schima species with only 0.5× sequencing depth, as six species were well-supported with unassembled data sizes as small as 0.5 Gb. These findings demonstrate the potential for Skmer approach in species identification, where nuclear genomic data plays a crucial role. For taxonomically difficult taxa such as Schima, which have diverged recently and have low levels of genetic variation, Skmer is a promising alternative to next generation barcodes.
{"title":"Skmer approach improves species discrimination in taxonomically problematic genus <i>Schima</i> (Theaceae).","authors":"Han-Ning Duan, Yin-Zi Jiang, Jun-Bo Yang, Jie Cai, Jian-Li Zhao, Lu Li, Xiang-Qin Yu","doi":"10.1016/j.pld.2024.06.003","DOIUrl":"10.1016/j.pld.2024.06.003","url":null,"abstract":"<p><p>Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate. In this study, we used Skmer to identify species based on genomic skims of 47 individuals representing 10 out of 13 species of <i>Schima</i> (Theaceae) from China. The unassembled reads identified six species, with a species identification rate of 60%, twice as high as previous efforts that used plastid genomes (27.27%). In addition, Skmer was able to identify <i>Schima</i> species with only 0.5× sequencing depth, as six species were well-supported with unassembled data sizes as small as 0.5 Gb. These findings demonstrate the potential for Skmer approach in species identification, where nuclear genomic data plays a crucial role. For taxonomically difficult taxa such as <i>Schima</i>, which have diverged recently and have low levels of genetic variation, Skmer is a promising alternative to next generation barcodes.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 6","pages":"713-722"},"PeriodicalIF":4.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17eCollection Date: 2024-09-01DOI: 10.1016/j.pld.2024.06.001
Linjiang Ye, Robabeh Shahi Shavvon, Hailing Qi, Hongyu Wu, Pengzhen Fan, Mohammad Nasir Shalizi, Safiullah Khurram, Mamadzhanov Davletbek, Yerlan Turuspekov, Jie Liu
The common walnut (Juglans regia) is one of the most economically important nut trees cultivated worldwide. Despite its importance, no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated, Central Asia. In this study, we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia. We found moderate genetic diversity of J. regia across Central Asia, with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance. Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that, except for two populations in Gongliu Wild Walnut Valley, humans might have introduced walnut populations to Xinjiang, China. The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation, breeding system, and prolonged anthropogenic activity. We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang. These findings enhance our understanding of the genetic variation throughout the distribution range of J. regia in Central Asia, which will provide a key prerequisite for evidence-based conservation and management.
{"title":"Population genetic insights into the conservation of common walnut (<i>Juglans regia</i>) in Central Asia.","authors":"Linjiang Ye, Robabeh Shahi Shavvon, Hailing Qi, Hongyu Wu, Pengzhen Fan, Mohammad Nasir Shalizi, Safiullah Khurram, Mamadzhanov Davletbek, Yerlan Turuspekov, Jie Liu","doi":"10.1016/j.pld.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.pld.2024.06.001","url":null,"abstract":"<p><p>The common walnut (<i>Juglans regia</i>) is one of the most economically important nut trees cultivated worldwide. Despite its importance, no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated, Central Asia. In this study, we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia. We found moderate genetic diversity of <i>J. regia</i> across Central Asia, with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance. Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that, except for two populations in Gongliu Wild Walnut Valley, humans might have introduced walnut populations to Xinjiang, China. The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation, breeding system, and prolonged anthropogenic activity. We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang. These findings enhance our understanding of the genetic variation throughout the distribution range of <i>J</i>. <i>regia</i> in Central Asia, which will provide a key prerequisite for evidence-based conservation and management.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 5","pages":"600-610"},"PeriodicalIF":4.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-25eCollection Date: 2024-07-01DOI: 10.1016/j.pld.2024.05.005
Yanjun Du, Rongchen Zhang, Xinran Tang, Xinyang Wang, Lingfeng Mao, Guoke Chen, Jiangshan Lai, Keping Ma
The timing of flowering is an important driver of species distribution and community assembly patterns. However, we still have much to learn about the factors that shape flowering diversity (i.e., number of species flowering per period) in plant communities. One potential explanation of flowering diversity is the mid-domain effect, which states that geometric constraints on species ranges within a bounded domain (space or time) will yield a mid-domain peak in diversity regardless of ecological factors. Here, we determine whether the mid-domain effect explains peak flowering time (i.e., when most species of communities are flowering) across China. We used phenological data of 16,267 herbaceous and woody species from the provincial Flora in China and species distribution data from the Chinese Vascular Plant Distribution Database to determine relationships between the observed number of species flowering and the number of species flowering as predicted by the mid-domain effect model, as well as between three climatic variables (mean minimum monthly temperature, mean monthly precipitation, and mean monthly sunshine duration). We found that the mid-domain effect explained a significant proportion of the temporal variation in flowering diversity across all species in China. Further, the mid-domain effect explained a greater proportion of variance in flowering diversity at higher latitudes than at lower latitudes. The patterns of flowering diversity for both herbaceous and woody species were related to both the mid-domain effect and environmental variables. Our findings indicate that including geometric constraints in conjunction with abiotic and biotic predictors will improve predictions of flowering diversity patterns.
{"title":"The mid-domain effect in flowering phenology.","authors":"Yanjun Du, Rongchen Zhang, Xinran Tang, Xinyang Wang, Lingfeng Mao, Guoke Chen, Jiangshan Lai, Keping Ma","doi":"10.1016/j.pld.2024.05.005","DOIUrl":"https://doi.org/10.1016/j.pld.2024.05.005","url":null,"abstract":"<p><p>The timing of flowering is an important driver of species distribution and community assembly patterns. However, we still have much to learn about the factors that shape flowering diversity (i.e., number of species flowering per period) in plant communities. One potential explanation of flowering diversity is the mid-domain effect, which states that geometric constraints on species ranges within a bounded domain (space or time) will yield a mid-domain peak in diversity regardless of ecological factors. Here, we determine whether the mid-domain effect explains peak flowering time (i.e., when most species of communities are flowering) across China. We used phenological data of 16,267 herbaceous and woody species from the provincial <i>Flora</i> in China and species distribution data from the Chinese Vascular Plant Distribution Database to determine relationships between the observed number of species flowering and the number of species flowering as predicted by the mid-domain effect model, as well as between three climatic variables (mean minimum monthly temperature, mean monthly precipitation, and mean monthly sunshine duration). We found that the mid-domain effect explained a significant proportion of the temporal variation in flowering diversity across all species in China. Further, the mid-domain effect explained a greater proportion of variance in flowering diversity at higher latitudes than at lower latitudes. The patterns of flowering diversity for both herbaceous and woody species were related to both the mid-domain effect and environmental variables. Our findings indicate that including geometric constraints in conjunction with abiotic and biotic predictors will improve predictions of flowering diversity patterns.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 4","pages":"502-509"},"PeriodicalIF":4.6,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29eCollection Date: 2024-07-01DOI: 10.1016/j.pld.2024.04.011
Yue Zhao, Ya-Ping Chen, Bryan T Drew, Fei Zhao, Maryam Almasi, Orzimat T Turginov, Jin-Fei Xiao, Abdul G Karimi, Yasaman Salmaki, Xiang-Qin Yu, Chun-Lei Xiang
Phlomoides, with 150-170 species, is the second largest and perhaps most taxonomically challenging genus within the subfamily Lamioideae (Lamiaceae). With about 60 species, China is one of three major biodiversity centers of Phlomoides. Although some Phlomoides species from China have been included in previous molecular phylogenetic studies, a robust and broad phylogeny of this lineage has yet to be completed. Moreover, given the myriad new additions to the genus, the existing infrageneric classification needs to be evaluated and revised. Here, we combine molecular and morphological data to investigate relationships within Phlomoides, with a focus on Chinese species. We observed that plastid DNA sequences can resolve relationships within Phlomoides better than nuclear ribosomal internal and external transcribed spacer regions (nrITS and nrETS). Molecular phylogenetic analyses confirm the monophyly of Phlomoides, but most previously defined infrageneric groups are not monophyletic. In addition, morphological analysis demonstrates the significant taxonomic value of eight characters to the genus. Based on our molecular phylogenetic analyses and morphological data, we establish a novel section Notochaete within Phlomoides, and propose three new combinations as well as three new synonyms. This study presents the first molecular phylogenetic analyses of Phlomoides in which taxa representative of the entire genus are included, and highlights the phylogenetic and taxonomic value of several morphological characters from species of Phlomoides from China. Our study suggests that a taxonomic revision and reclassification for the entire genus is necessary in the future.
{"title":"Molecular phylogeny and taxonomy of <i>Phlomoides</i> (Lamiaceae subfamily Lamioideae) in China: Insights from molecular and morphological data.","authors":"Yue Zhao, Ya-Ping Chen, Bryan T Drew, Fei Zhao, Maryam Almasi, Orzimat T Turginov, Jin-Fei Xiao, Abdul G Karimi, Yasaman Salmaki, Xiang-Qin Yu, Chun-Lei Xiang","doi":"10.1016/j.pld.2024.04.011","DOIUrl":"https://doi.org/10.1016/j.pld.2024.04.011","url":null,"abstract":"<p><p><i>Phlomoides</i>, with 150-170 species, is the second largest and perhaps most taxonomically challenging genus within the subfamily Lamioideae (Lamiaceae). With about 60 species, China is one of three major biodiversity centers of <i>Phlomoides</i>. Although some <i>Phlomoides</i> species from China have been included in previous molecular phylogenetic studies, a robust and broad phylogeny of this lineage has yet to be completed. Moreover, given the myriad new additions to the genus, the existing infrageneric classification needs to be evaluated and revised. Here, we combine molecular and morphological data to investigate relationships within <i>Phlomoides</i>, with a focus on Chinese species. We observed that plastid DNA sequences can resolve relationships within <i>Phlomoides</i> better than nuclear ribosomal internal and external transcribed spacer regions (nrITS and nrETS). Molecular phylogenetic analyses confirm the monophyly of <i>Phlomoides</i>, but most previously defined infrageneric groups are not monophyletic. In addition, morphological analysis demonstrates the significant taxonomic value of eight characters to the genus. Based on our molecular phylogenetic analyses and morphological data, we establish a novel section <i>Notochaete</i> within <i>Phlomoides</i>, and propose three new combinations as well as three new synonyms. This study presents the first molecular phylogenetic analyses of <i>Phlomoides</i> in which taxa representative of the entire genus are included, and highlights the phylogenetic and taxonomic value of several morphological characters from species of <i>Phlomoides</i> from China. Our study suggests that a taxonomic revision and reclassification for the entire genus is necessary in the future.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 4","pages":"462-475"},"PeriodicalIF":4.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26eCollection Date: 2024-09-01DOI: 10.1016/j.pld.2024.04.009
Tana Wuyun, Lu Zhang, Tiina Tosens, Bin Liu, Kristiina Mark, José Ángel Morales-Sánchez, Jesamine Jöneva Rikisahedew, Vivian Kuusk, Ülo Niinemets
Leaf economics spectrum (LES) describes the fundamental trade-offs between leaf structural, chemical, and physiological investments. Generally, structurally robust thick leaves with high leaf dry mass per unit area (LMA) exhibit lower photosynthetic capacity per dry mass (Amass). Paradoxically, "soft and thin-leaved" mosses and spikemosses have very low Amass, but due to minute-size foliage elements, their LMA and its components, leaf thickness (LT) and density (LD), have not been systematically estimated. Here, we characterized LES and associated traits in cryptogams in unprecedented details, covering five evolutionarily different lineages. We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants. Across a broad range of species from different lineages, Amass and LD were negatively correlated. In contrast, Amass was only related to LMA when LMA was greater than 14 g cm-2. In fact, low Amass reflected high LD and cell wall thickness in the studied cryptogams. We conclude that evolutionarily old plant lineages attained poorly differentiated, ultrathin mesophyll by increasing LD. Across plant lineages, LD, not LMA, is the trait that represents the trade-off between leaf robustness and physiology in the LES.
叶片经济光谱(LES)描述了叶片结构、化学和生理投资之间的基本权衡。一般来说,结构坚固的厚叶单位面积干重(LMA)较高,单位干重的光合能力(A 重)较低。矛盾的是,"柔弱薄叶 "苔藓和尖叶苔藓的单位干重很低,但由于叶片元素的微小尺寸,它们的单位干重及其组成部分--叶片厚度(LT)和密度(LD)--尚未得到系统的估算。在这里,我们对隐花植物的 LES 及其相关性状进行了前所未有的详细描述,涵盖了五个进化上不同的品系。我们发现,苔藓和尖叶苔藓的 LMA 和 LT 值是陆生植物中最低的。在不同品系的众多物种中,A质量和LD呈负相关。事实上,在所研究的隐花植物中,低 A 质量反映了高 LD 和细胞壁厚度。我们的结论是,进化过程中的古老植物种系通过增加 LD 获得了分化程度低的超薄叶肉。在所有植物品系中,LD 而不是 LMA 是代表叶片坚固性和 LES 生理机能之间权衡的特征。
{"title":"Extremely thin but very robust: Surprising cryptogam trait combinations at the end of the leaf economics spectrum.","authors":"Tana Wuyun, Lu Zhang, Tiina Tosens, Bin Liu, Kristiina Mark, José Ángel Morales-Sánchez, Jesamine Jöneva Rikisahedew, Vivian Kuusk, Ülo Niinemets","doi":"10.1016/j.pld.2024.04.009","DOIUrl":"https://doi.org/10.1016/j.pld.2024.04.009","url":null,"abstract":"<p><p>Leaf economics spectrum (LES) describes the fundamental trade-offs between leaf structural, chemical, and physiological investments. Generally, structurally robust thick leaves with high leaf dry mass per unit area (LMA) exhibit lower photosynthetic capacity per dry mass (<i>A</i> <sub>mass</sub>). Paradoxically, \"soft and thin-leaved\" mosses and spikemosses have very low <i>A</i> <sub>mass</sub>, but due to minute-size foliage elements, their LMA and its components, leaf thickness (LT) and density (LD), have not been systematically estimated. Here, we characterized LES and associated traits in cryptogams in unprecedented details, covering five evolutionarily different lineages. We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants. Across a broad range of species from different lineages, <i>A</i> <sub>mass</sub> and LD were negatively correlated. In contrast, <i>A</i> <sub>mass</sub> was only related to LMA when LMA was greater than 14 g cm<sup>-</sup> <sup>2</sup>. In fact, low <i>A</i> <sub>mass</sub> reflected high LD and cell wall thickness in the studied cryptogams. We conclude that evolutionarily old plant lineages attained poorly differentiated, ultrathin mesophyll by increasing LD. Across plant lineages, LD, not LMA, is the trait that represents the trade-off between leaf robustness and physiology in the LES.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 5","pages":"621-629"},"PeriodicalIF":4.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polyploidy is a major factor in the evolution of plants, yet we know little about the origin and evolution of polyploidy in intertidal species. This study aimed to identify the evolutionary transitions in three true-mangrove species of the genus Acanthus distributed in the Indo-West Pacific region. For this purpose, we took an integrative approach that combined data on morphology, cytology, climatic niche, phylogeny, and biogeography of 493 samples from 42 geographic sites. Our results show that the Acanthus ilicifolius lineage distributed east of the Thai-Malay Peninsula possesses a tetraploid karyotype, which is morphologically distinct from that of the lineage on the west side. The haplotype networks and phylogenetic trees for the chloroplast genome and eight nuclear genes reveal that the tetraploid species has two sub-genomes, one each from A. ilicifolius and A.ebracteatus, the paternal and maternal parents, respectively. Population structure analysis also supports the hybrid speciation history of the new tetraploid species. The two sub-genomes of the tetraploid species diverged from their diploid progenitors during the Pleistocene. Environmental niche models revealed that the tetraploid species not only occupied the near-entire niche space of the diploids, but also expanded into novel environments. Our findings suggest that A. ilicifolius species distributed on the east side of the Thai-Malay Peninsula should be regarded as a new species, A. tetraploideus, which originated from hybridization between A. ilicifolius and A. ebracteatus, followed by chromosome doubling. This is the first report of a true-mangrove allopolyploid species that can reproduce sexually and clonally reproduction, which explains the long-term adaptive potential of the species.
多倍体是植物进化的一个重要因素,但我们对潮间带物种多倍体的起源和进化知之甚少。本研究旨在确定分布在印度-西太平洋地区的三个真红树属物种的进化转变。为此,我们采用了一种综合方法,结合了来自 42 个地理位置的 493 个样本的形态学、细胞学、气候生态位、系统发育和生物地理学数据。结果表明,分布在泰国-马来半岛以东的Acanthus ilicifolius品系具有四倍体核型,在形态上与西侧的品系截然不同。叶绿体基因组和八个核基因的单倍型网络和系统发生树显示,该四倍体物种有两个亚基因组,分别来自父本 A. ilicifolius 和母本 A. ebracteatus。种群结构分析也支持四倍体新物种的杂交分化历史。四倍体物种的两个亚基因组是在更新世期间从它们的二倍体祖先分化而来的。环境生态位模型显示,四倍体物种不仅占据了二倍体近乎完整的生态位空间,而且还扩展到了新的环境中。我们的研究结果表明,分布在泰国-马来半岛东侧的A. ilicifolius物种应被视为一个新物种,即A. tetraploideus,它起源于A. ilicifolius和A. ebracteatus的杂交,随后染色体加倍。这是首次报道能进行有性繁殖和克隆繁殖的真红树异源多倍体物种,这解释了该物种的长期适应潜力。
{"title":"Origin and evolution of a new tetraploid mangrove species in an intertidal zone.","authors":"Hui Feng, Achyut Kumar Banerjee, Wuxia Guo, Yang Yuan, Fuyuan Duan, Wei Lun Ng, Xuming Zhao, Yuting Liu, Chunmei Li, Ying Liu, Linfeng Li, Yelin Huang","doi":"10.1016/j.pld.2024.04.007","DOIUrl":"https://doi.org/10.1016/j.pld.2024.04.007","url":null,"abstract":"<p><p>Polyploidy is a major factor in the evolution of plants, yet we know little about the origin and evolution of polyploidy in intertidal species. This study aimed to identify the evolutionary transitions in three true-mangrove species of the genus <i>Acanthus</i> distributed in the Indo-West Pacific region. For this purpose, we took an integrative approach that combined data on morphology, cytology, climatic niche, phylogeny, and biogeography of 493 samples from 42 geographic sites. Our results show that the <i>Acanthus ilicifolius</i> lineage distributed east of the Thai-Malay Peninsula possesses a tetraploid karyotype, which is morphologically distinct from that of the lineage on the west side. The haplotype networks and phylogenetic trees for the chloroplast genome and eight nuclear genes reveal that the tetraploid species has two sub-genomes, one each from <i>A. ilicifolius</i> and <i>A</i> <i>.</i> <i>ebracteatus</i>, the paternal and maternal parents, respectively. Population structure analysis also supports the hybrid speciation history of the new tetraploid species. The two sub-genomes of the tetraploid species diverged from their diploid progenitors during the Pleistocene. Environmental niche models revealed that the tetraploid species not only occupied the near-entire niche space of the diploids, but also expanded into novel environments. Our findings suggest that <i>A. ilicifolius</i> species distributed on the east side of the Thai-Malay Peninsula should be regarded as a new species, <i>A</i>. <i>tetraploideus</i>, which originated from hybridization between <i>A. ilicifolius</i> and <i>A. ebracteatus</i>, followed by chromosome doubling. This is the first report of a true-mangrove allopolyploid species that can reproduce sexually and clonally reproduction, which explains the long-term adaptive potential of the species.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 4","pages":"476-490"},"PeriodicalIF":4.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere. Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations. One of these relict lineages is Dipteronia, an oligotypic tree genus with a fossil record extending to the Paleocene. Here, we investigated the genetic variability, demographic dynamics and diversification patterns of the two currently recognized Dipteronia species (Dipteroniasinensis and D.dyeriana). Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions, two single copy nuclear genes and 15 simple sequence repeat loci. The genetic study was combined with niche comparison analyses on the environmental space, ecological niche modeling, and landscape connectivity analysis. We found that the two Dipteronia species have highly diverged both in genetic and ecological terms. Despite the incipient speciation processes that can be observed in D. sinensis, the occurrence of long-term stable refugia and, particularly, a dispersal corridor along Daba Shan-west Qinling, likely ensured its genetic and ecological integrity to date. Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic, but also provide insight into how Arcto-Tertiary relict plants in East Asia survived, evolved, and diversified.
{"title":"Genetically- and environmentally-dependent processes drive interspecific and intraspecific divergence in the Chinese relict endemic genus <i>Dipteronia</i>.","authors":"Tao Zhou, Xiaodan Chen, Jordi López-Pujol, Guoqing Bai, Sonia Herrando-Moraira, Neus Nualart, Xiao Zhang, Yuemei Zhao, Guifang Zhao","doi":"10.1016/j.pld.2024.04.008","DOIUrl":"https://doi.org/10.1016/j.pld.2024.04.008","url":null,"abstract":"<p><p>China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere. Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations. One of these relict lineages is <i>Dipteronia</i>, an oligotypic tree genus with a fossil record extending to the Paleocene. Here, we investigated the genetic variability, demographic dynamics and diversification patterns of the two currently recognized <i>Dipteronia</i> species (<i>D</i> <i>ipteronia</i> <i>sinensis</i> and <i>D</i> <i>.</i> <i>dyeriana</i>). Molecular data were obtained from 45 populations of <i>Dipteronia</i> by genotyping three cpDNA regions, two single copy nuclear genes and 15 simple sequence repeat loci. The genetic study was combined with niche comparison analyses on the environmental space, ecological niche modeling, and landscape connectivity analysis. We found that the two <i>Dipteronia</i> species have highly diverged both in genetic and ecological terms. Despite the incipient speciation processes that can be observed in <i>D. sinensis</i>, the occurrence of long-term stable refugia and, particularly, a dispersal corridor along Daba Shan-west Qinling, likely ensured its genetic and ecological integrity to date. Our study will not only help us to understand how populations of <i>Dipteronia</i> species responded to the tectonic and climatic changes of the Cenozoic, but also provide insight into how Arcto-Tertiary relict plants in East Asia survived, evolved, and diversified.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 5","pages":"585-599"},"PeriodicalIF":4.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}