Xue-Hong Liu, Zhun Liu, Ze-Hui Ren, Hong-Xuan Chen, Ying Zhang, Zhang Zhang, Nan Cao, Guan-Zheng Luo
{"title":"Co-effects of m6A and chromatin accessibility dynamics in the regulation of cardiomyocyte differentiation.","authors":"Xue-Hong Liu, Zhun Liu, Ze-Hui Ren, Hong-Xuan Chen, Ying Zhang, Zhang Zhang, Nan Cao, Guan-Zheng Luo","doi":"10.1186/s13072-023-00506-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiomyocyte growth and differentiation rely on precise gene expression regulation, with epigenetic modifications emerging as key players in this intricate process. Among these modifications, N6-methyladenosine (m6A) stands out as one of the most prevalent modifications on mRNA, exerting influence over mRNA metabolism and gene expression. However, the specific function of m6A in cardiomyocyte differentiation remains poorly understood.</p><p><strong>Results: </strong>We investigated the relationship between m6A modification and cardiomyocyte differentiation by conducting a comprehensive profiling of m6A dynamics during the transition from pluripotent stem cells to cardiomyocytes. Our findings reveal that while the overall m6A modification level remains relatively stable, the m6A levels of individual genes undergo significant changes throughout cardiomyocyte differentiation. We discovered the correlation between alterations in chromatin accessibility and the binding capabilities of m6A writers, erasers, and readers. The changes in chromatin accessibility influence the recruitment and activity of m6A regulatory proteins, thereby impacting the levels of m6A modification on specific mRNA transcripts.</p><p><strong>Conclusion: </strong>Our data demonstrate that the coordinated dynamics of m6A modification and chromatin accessibility are prominent during the cardiomyocyte differentiation.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-023-00506-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cardiomyocyte growth and differentiation rely on precise gene expression regulation, with epigenetic modifications emerging as key players in this intricate process. Among these modifications, N6-methyladenosine (m6A) stands out as one of the most prevalent modifications on mRNA, exerting influence over mRNA metabolism and gene expression. However, the specific function of m6A in cardiomyocyte differentiation remains poorly understood.
Results: We investigated the relationship between m6A modification and cardiomyocyte differentiation by conducting a comprehensive profiling of m6A dynamics during the transition from pluripotent stem cells to cardiomyocytes. Our findings reveal that while the overall m6A modification level remains relatively stable, the m6A levels of individual genes undergo significant changes throughout cardiomyocyte differentiation. We discovered the correlation between alterations in chromatin accessibility and the binding capabilities of m6A writers, erasers, and readers. The changes in chromatin accessibility influence the recruitment and activity of m6A regulatory proteins, thereby impacting the levels of m6A modification on specific mRNA transcripts.
Conclusion: Our data demonstrate that the coordinated dynamics of m6A modification and chromatin accessibility are prominent during the cardiomyocyte differentiation.
期刊介绍:
Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.