首页 > 最新文献

Epigenetics & Chromatin最新文献

英文 中文
Coordinated regulation of chromatin modifiers reflects organised epigenetic programming in mouse oocytes.
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-04-05 DOI: 10.1186/s13072-025-00583-9
Chloe A Edwards-Lee, Ellen G Jarred, Patrick S Western

Background: Epigenetic modifications provide mechanisms for influencing gene expression, regulating cell differentiation and maintaining long-term memory of cellular identity and function. As oocytes transmit epigenetic information to offspring, correct establishment of the oocyte epigenome is important for normal offspring development. Oocyte epigenetic programming is highly complex, involving a range of epigenetic modifiers which interact to establish a specific distribution of DNA methylation and histone modifications. Disruptions to oocyte epigenetic programming can alter epigenetic memory and prevent normal developmental outcomes in the next generation. Therefore, it is critical that we further our understanding of the interdependent relationships between various epigenetic modifiers and modifications during oogenesis.

Results: In this study we investigated the spatial and temporal distribution of a range of epigenetic modifiers and modifications in growing oocytes of primordial to antral follicles. We provide comprehensive immunofluorescent profiles of SETD2, H3K36me3, KDM6A, RBBP7, H3K27me3, DNMT3A and DNMT3L and compare these profiles to our previously published profiles of the Polycomb Repressive Complex 2 components EED, EZH2 and SUZ12 in growing oocytes of wildtype mice. In addition, we examined the nuclear levels and spatial distribution of these epigenetic modifiers and modifications in oocytes that lacked the essential Polycomb Repressive Complex 2 subunit, EED. Notably, histone remodelling in primary-secondary follicle oocytes preceded upregulation of DNMT3A and DNMT3L in secondary-antral follicle oocytes. Moreover, loss of EED and H3K27me3 led to significantly increased levels of the H3K36me3 methyltransferase SETD2 during early-mid oocyte growth, although the average levels of H3K36me3 were unchanged.

Conclusions: Overall, these data demonstrate that oocyte epigenetic programming is a highly ordered process, with histone remodelling in early growing oocytes preceding de novo DNA methylation in secondary-antral follicle oocytes. These results indicate that tight temporal and spatial regulation of histone modifiers and modifications is essential to ensure correct establishment of the unique epigenome present in fully grown oocytes. Further understanding of the temporal and spatial relationships between different epigenetic modifications and how they interact is essential for understanding how germline epigenetic programming affects inheritance and offspring development in mammals, including humans.

背景:表观遗传修饰提供了影响基因表达、调节细胞分化以及维持细胞特性和功能长期记忆的机制。由于卵母细胞向后代传递表观遗传信息,因此正确建立卵母细胞表观遗传组对后代的正常发育非常重要。卵母细胞表观遗传编程非常复杂,涉及一系列表观遗传修饰因子,这些修饰因子相互作用,建立了 DNA 甲基化和组蛋白修饰的特定分布。卵母细胞表观遗传编程的破坏会改变表观遗传记忆,阻碍下一代的正常发育。因此,我们必须进一步了解卵母细胞发生过程中各种表观遗传修饰因子和修饰之间的相互依存关系:在这项研究中,我们调查了一系列表观遗传修饰因子和修饰在原始卵泡到前卵泡的卵母细胞生长过程中的时空分布。我们提供了SETD2、H3K36me3、KDM6A、RBBP7、H3K27me3、DNMT3A和DNMT3L的全面免疫荧光图谱,并将这些图谱与我们之前发表的野生型小鼠生长卵母细胞中多聚核抑制复合体2成分EED、EZH2和SUZ12的图谱进行了比较。此外,我们还研究了这些表观遗传修饰因子的核水平和空间分布,以及在缺乏必需的多角体抑制复合体 2 亚基 EED 的卵母细胞中的修饰情况。值得注意的是,初级-次级卵泡卵母细胞中的组蛋白重塑先于次级-中级卵泡卵母细胞中 DNMT3A 和 DNMT3L 的上调。此外,EED和H3K27me3的缺失导致早中期卵母细胞生长过程中H3K36me3甲基转移酶SETD2的水平显著增加,尽管H3K36me3的平均水平没有变化:总之,这些数据表明,卵母细胞表观遗传编程是一个高度有序的过程,生长早期卵母细胞中的组蛋白重塑先于中期卵泡卵母细胞中的DNA甲基化。这些结果表明,对组蛋白修饰因子和修饰进行严格的时空调控对于确保正确建立完全生长卵母细胞中存在的独特表观基因组至关重要。进一步了解不同表观遗传修饰之间的时空关系以及它们如何相互作用,对于了解生殖系表观遗传编程如何影响包括人类在内的哺乳动物的遗传和后代发育至关重要。
{"title":"Coordinated regulation of chromatin modifiers reflects organised epigenetic programming in mouse oocytes.","authors":"Chloe A Edwards-Lee, Ellen G Jarred, Patrick S Western","doi":"10.1186/s13072-025-00583-9","DOIUrl":"10.1186/s13072-025-00583-9","url":null,"abstract":"<p><strong>Background: </strong>Epigenetic modifications provide mechanisms for influencing gene expression, regulating cell differentiation and maintaining long-term memory of cellular identity and function. As oocytes transmit epigenetic information to offspring, correct establishment of the oocyte epigenome is important for normal offspring development. Oocyte epigenetic programming is highly complex, involving a range of epigenetic modifiers which interact to establish a specific distribution of DNA methylation and histone modifications. Disruptions to oocyte epigenetic programming can alter epigenetic memory and prevent normal developmental outcomes in the next generation. Therefore, it is critical that we further our understanding of the interdependent relationships between various epigenetic modifiers and modifications during oogenesis.</p><p><strong>Results: </strong>In this study we investigated the spatial and temporal distribution of a range of epigenetic modifiers and modifications in growing oocytes of primordial to antral follicles. We provide comprehensive immunofluorescent profiles of SETD2, H3K36me3, KDM6A, RBBP7, H3K27me3, DNMT3A and DNMT3L and compare these profiles to our previously published profiles of the Polycomb Repressive Complex 2 components EED, EZH2 and SUZ12 in growing oocytes of wildtype mice. In addition, we examined the nuclear levels and spatial distribution of these epigenetic modifiers and modifications in oocytes that lacked the essential Polycomb Repressive Complex 2 subunit, EED. Notably, histone remodelling in primary-secondary follicle oocytes preceded upregulation of DNMT3A and DNMT3L in secondary-antral follicle oocytes. Moreover, loss of EED and H3K27me3 led to significantly increased levels of the H3K36me3 methyltransferase SETD2 during early-mid oocyte growth, although the average levels of H3K36me3 were unchanged.</p><p><strong>Conclusions: </strong>Overall, these data demonstrate that oocyte epigenetic programming is a highly ordered process, with histone remodelling in early growing oocytes preceding de novo DNA methylation in secondary-antral follicle oocytes. These results indicate that tight temporal and spatial regulation of histone modifiers and modifications is essential to ensure correct establishment of the unique epigenome present in fully grown oocytes. Further understanding of the temporal and spatial relationships between different epigenetic modifications and how they interact is essential for understanding how germline epigenetic programming affects inheritance and offspring development in mammals, including humans.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"19"},"PeriodicalIF":4.2,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-translational modifications of epigenetic modifier TIP60: their role in cellular functions and cancer.
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-04-04 DOI: 10.1186/s13072-025-00572-y
Himanshu Gupta, Ashish Gupta

TIP60 is a crucial lysine acetyltransferase protein that catalyzes the acetylation of histone and non-histone proteins. This enzyme plays a crucial role in maintaining genomic integrity, by participating in DNA damage repair, ensuring accurate chromosomal segregation, and regulating a myriad of cellular processes such as apoptosis, autophagy, and wound-induced cell migration. One of the primary mechanisms through which TIP60 executes these diverse cellular functions is via post-translational modifications (PTMs). Over the years, extensive studies have demonstrated the importance of PTMs in controlling protein functions. This review aims to summarize the findings on PTMs occurring on the TIP60 protein and their functional implications. We also discuss previously uncharacterized PTM sites identified on TIP60 and examine their relationship with cancer-associated mutations, with a particular focus on residues potentially modified by various PTMs, to understand the cause of deregulation of TIP60 in various cancers.

TIP60 是一种重要的赖氨酸乙酰转移酶蛋白,能催化组蛋白和非组蛋白的乙酰化。这种酶通过参与 DNA 损伤修复、确保染色体准确分离以及调节细胞凋亡、自噬和伤口诱导的细胞迁移等大量细胞过程,在维护基因组完整性方面发挥着至关重要的作用。TIP60 执行这些不同细胞功能的主要机制之一是通过翻译后修饰 (PTM)。多年来,大量研究证明了 PTM 在控制蛋白质功能方面的重要性。本综述旨在总结发生在 TIP60 蛋白上的 PTM 的研究结果及其功能影响。我们还讨论了之前在 TIP60 上发现的未表征的 PTM 位点,并研究了它们与癌症相关突变的关系,特别关注可能被各种 PTM 修饰的残基,以了解 TIP60 在各种癌症中失调的原因。
{"title":"Post-translational modifications of epigenetic modifier TIP60: their role in cellular functions and cancer.","authors":"Himanshu Gupta, Ashish Gupta","doi":"10.1186/s13072-025-00572-y","DOIUrl":"10.1186/s13072-025-00572-y","url":null,"abstract":"<p><p>TIP60 is a crucial lysine acetyltransferase protein that catalyzes the acetylation of histone and non-histone proteins. This enzyme plays a crucial role in maintaining genomic integrity, by participating in DNA damage repair, ensuring accurate chromosomal segregation, and regulating a myriad of cellular processes such as apoptosis, autophagy, and wound-induced cell migration. One of the primary mechanisms through which TIP60 executes these diverse cellular functions is via post-translational modifications (PTMs). Over the years, extensive studies have demonstrated the importance of PTMs in controlling protein functions. This review aims to summarize the findings on PTMs occurring on the TIP60 protein and their functional implications. We also discuss previously uncharacterized PTM sites identified on TIP60 and examine their relationship with cancer-associated mutations, with a particular focus on residues potentially modified by various PTMs, to understand the cause of deregulation of TIP60 in various cancers.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"18"},"PeriodicalIF":4.2,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide DNA methylation patterns in Daphnia magna are not significantly associated with age.
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-04-01 DOI: 10.1186/s13072-025-00580-y
Ruoshui Liu, Marco Morselli, Lev Y Yampolsky, Leonid Peshkin, Matteo Pellegrini

Background: DNA methylation plays a crucial role in gene regulation and epigenetic inheritance across diverse organisms. Daphnia magna, a model organism in ecological and evolutionary research, has been widely used to study environmental responses, pharmaceutical toxicity, and developmental plasticity. However, its DNA methylation landscape and age-related epigenetic changes remain incompletely understood.

Results: In this study, we characterized DNA methyltransferases (DNMTs) and mapped DNA methylation across the D. magna genome using whole-genome bisulfite sequencing. Our analysis identified three DNMTs: a highly expressed but nonfunctional de novo methyltransferase (DNMT3.1), alongside lowly expressed yet functional de novo methyltransferase (DNMT3.2) and maintenance methyltransferase (DNMT1). D. magna exhibits overall low DNA methylation, targeting primarily CpG dinucleotides. Methylation is sparse at promoters but elevated in the first exons downstream of transcription start sites, with these exons showing hypermethylation relative to adjacent introns. To examine age-associated DNA methylation changes, we analyzed D. magna individuals across multiple life stages. Our results showed no significant global differences in DNA methylation levels between young, mature, and old individuals, nor any age-related clustering in dimensionality reduction analyses. Attempts to construct an epigenetic clock using machine learning models did not yield accurate age predictions, likely due to the overall low DNA methylation levels and lack of robust age-associated methylation changes.

Conclusions: This study provides a comprehensive characterization of D. magna's DNA methylation landscape and DNMT enzymes, highlighting a distinct pattern of exon-biased CpG methylation. Contrary to prior studies, we found no strong evidence supporting age-associated epigenetic changes, suggesting that DNA methylation may have a limited role in aging in D. magna. These findings enhance our understanding of invertebrate epigenetics and emphasize the need for further research into the interplay between DNA methylation, environmental factors, and gene regulation in D. magna.

背景:DNA 甲基化在各种生物的基因调控和表观遗传中发挥着至关重要的作用。大型水蚤是生态和进化研究中的模式生物,已被广泛用于研究环境反应、药物毒性和发育可塑性。然而,对其 DNA 甲基化景观和与年龄相关的表观遗传变化的了解仍然不够:在这项研究中,我们利用全基因组亚硫酸氢盐测序鉴定了DNA甲基转移酶(DNMTs)的特征,并绘制了大型蜗牛基因组的DNA甲基化图谱。我们的分析发现了三种 DNMTs:一种高表达但无功能的从头甲基转移酶(DNMT3.1),以及低表达但有功能的从头甲基转移酶(DNMT3.2)和维持甲基转移酶(DNMT1)。大型蜗牛的 DNA 甲基化程度总体较低,主要针对 CpG 二核苷酸。启动子的甲基化程度较低,但在转录起始位点下游的第一个外显子中甲基化程度较高,这些外显子相对于邻近的内含子呈现出高甲基化。为了研究与年龄相关的DNA甲基化变化,我们分析了巨蜥多个生命阶段的个体。结果显示,年轻、成熟和年老个体之间的DNA甲基化水平没有明显的整体差异,降维分析也没有发现任何与年龄相关的聚类现象。使用机器学习模型构建表观遗传时钟的尝试并没有得出准确的年龄预测,这可能是由于DNA甲基化水平总体较低以及缺乏稳健的年龄相关甲基化变化所致:这项研究全面描述了大型蜗牛的 DNA 甲基化景观和 DNMT 酶,突出显示了一种独特的外显子偏向 CpG 甲基化模式。与之前的研究相反,我们没有发现支持与年龄相关的表观遗传变化的有力证据,这表明 DNA 甲基化在大型蜗牛的衰老过程中可能作用有限。这些发现加深了我们对无脊椎动物表观遗传学的理解,并强调了进一步研究大型蜗牛DNA甲基化、环境因素和基因调控之间相互作用的必要性。
{"title":"Genome-wide DNA methylation patterns in Daphnia magna are not significantly associated with age.","authors":"Ruoshui Liu, Marco Morselli, Lev Y Yampolsky, Leonid Peshkin, Matteo Pellegrini","doi":"10.1186/s13072-025-00580-y","DOIUrl":"10.1186/s13072-025-00580-y","url":null,"abstract":"<p><strong>Background: </strong>DNA methylation plays a crucial role in gene regulation and epigenetic inheritance across diverse organisms. Daphnia magna, a model organism in ecological and evolutionary research, has been widely used to study environmental responses, pharmaceutical toxicity, and developmental plasticity. However, its DNA methylation landscape and age-related epigenetic changes remain incompletely understood.</p><p><strong>Results: </strong>In this study, we characterized DNA methyltransferases (DNMTs) and mapped DNA methylation across the D. magna genome using whole-genome bisulfite sequencing. Our analysis identified three DNMTs: a highly expressed but nonfunctional de novo methyltransferase (DNMT3.1), alongside lowly expressed yet functional de novo methyltransferase (DNMT3.2) and maintenance methyltransferase (DNMT1). D. magna exhibits overall low DNA methylation, targeting primarily CpG dinucleotides. Methylation is sparse at promoters but elevated in the first exons downstream of transcription start sites, with these exons showing hypermethylation relative to adjacent introns. To examine age-associated DNA methylation changes, we analyzed D. magna individuals across multiple life stages. Our results showed no significant global differences in DNA methylation levels between young, mature, and old individuals, nor any age-related clustering in dimensionality reduction analyses. Attempts to construct an epigenetic clock using machine learning models did not yield accurate age predictions, likely due to the overall low DNA methylation levels and lack of robust age-associated methylation changes.</p><p><strong>Conclusions: </strong>This study provides a comprehensive characterization of D. magna's DNA methylation landscape and DNMT enzymes, highlighting a distinct pattern of exon-biased CpG methylation. Contrary to prior studies, we found no strong evidence supporting age-associated epigenetic changes, suggesting that DNA methylation may have a limited role in aging in D. magna. These findings enhance our understanding of invertebrate epigenetics and emphasize the need for further research into the interplay between DNA methylation, environmental factors, and gene regulation in D. magna.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"17"},"PeriodicalIF":4.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crosstalk between metabolism and epigenetics during macrophage polarization.
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-03-29 DOI: 10.1186/s13072-025-00575-9
Kangling Zhang, Chinnaswamy Jagannath

Macrophage polarization is a dynamic process driven by a complex interplay of cytokine signaling, metabolism, and epigenetic modifications mediated by pathogens. Upon encountering specific environmental cues, monocytes differentiate into macrophages, adopting either a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype, depending on the cytokines present. M1 macrophages are induced by interferon-gamma (IFN-γ) and are characterized by their reliance on glycolysis and their role in host defense. In contrast, M2 macrophages, stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), favor oxidative phosphorylation and participate in tissue repair and anti-inflammatory responses. Metabolism is tightly linked to epigenetic regulation, because key metabolic intermediates such as acetyl-coenzyme A (CoA), α-ketoglutarate (α-KG), S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD+) serve as cofactors for chromatin-modifying enzymes, which in turn, directly influences histone acetylation, methylation, RNA/DNA methylation, and protein arginine methylation. These epigenetic modifications control gene expression by regulating chromatin accessibility, thereby modulating macrophage function and polarization. Histone acetylation generally promotes a more open chromatin structure conducive to gene activation, while histone methylation can either activate or repress gene expression depending on the specific residue and its methylation state. Crosstalk between histone modifications, such as acetylation and methylation, further fine-tunes macrophage phenotypes by regulating transcriptional networks in response to metabolic cues. While arginine methylation primarily functions in epigenetics by regulating gene expression through protein modifications, the degradation of methylated proteins releases arginine derivatives like asymmetric dimethylarginine (ADMA), which contribute directly to arginine metabolism-a key factor in macrophage polarization. This review explores the intricate relationships between metabolism and epigenetic regulation during macrophage polarization. A better understanding of this crosstalk will likely generate novel therapeutic insights for manipulating macrophage phenotypes during infections like tuberculosis and inflammatory diseases such as diabetes.

{"title":"Crosstalk between metabolism and epigenetics during macrophage polarization.","authors":"Kangling Zhang, Chinnaswamy Jagannath","doi":"10.1186/s13072-025-00575-9","DOIUrl":"10.1186/s13072-025-00575-9","url":null,"abstract":"<p><p>Macrophage polarization is a dynamic process driven by a complex interplay of cytokine signaling, metabolism, and epigenetic modifications mediated by pathogens. Upon encountering specific environmental cues, monocytes differentiate into macrophages, adopting either a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype, depending on the cytokines present. M1 macrophages are induced by interferon-gamma (IFN-γ) and are characterized by their reliance on glycolysis and their role in host defense. In contrast, M2 macrophages, stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), favor oxidative phosphorylation and participate in tissue repair and anti-inflammatory responses. Metabolism is tightly linked to epigenetic regulation, because key metabolic intermediates such as acetyl-coenzyme A (CoA), α-ketoglutarate (α-KG), S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD<sup>+</sup>) serve as cofactors for chromatin-modifying enzymes, which in turn, directly influences histone acetylation, methylation, RNA/DNA methylation, and protein arginine methylation. These epigenetic modifications control gene expression by regulating chromatin accessibility, thereby modulating macrophage function and polarization. Histone acetylation generally promotes a more open chromatin structure conducive to gene activation, while histone methylation can either activate or repress gene expression depending on the specific residue and its methylation state. Crosstalk between histone modifications, such as acetylation and methylation, further fine-tunes macrophage phenotypes by regulating transcriptional networks in response to metabolic cues. While arginine methylation primarily functions in epigenetics by regulating gene expression through protein modifications, the degradation of methylated proteins releases arginine derivatives like asymmetric dimethylarginine (ADMA), which contribute directly to arginine metabolism-a key factor in macrophage polarization. This review explores the intricate relationships between metabolism and epigenetic regulation during macrophage polarization. A better understanding of this crosstalk will likely generate novel therapeutic insights for manipulating macrophage phenotypes during infections like tuberculosis and inflammatory diseases such as diabetes.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"16"},"PeriodicalIF":4.2,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954343/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143743204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of non-coding RNA regulation of DNMT3A.
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-03-28 DOI: 10.1186/s13072-025-00574-w
Jonathan E Sandoval, Nancy V N Carullo, Aaron J Salisbury, Jeremy J Day, Norbert O Reich

Background: De novo DNA methylation by DNMT3A is a fundamental epigenetic modification for transcriptional regulation. Histone tails and regulatory proteins regulate DNMT3A, and the crosstalk between these epigenetic mechanisms ensures appropriate DNA methylation patterning. Based on findings showing that Fos ecRNA inhibits DNMT3A activity in neurons, we sought to characterize the contribution of this regulatory RNA in the modulation of DNMT3A in the presence of regulatory proteins and histone tails.

Results: We show that Fos ecRNA and mRNA strongly correlate in primary cortical neurons on a single cell level and provide evidence that Fos ecRNA modulation of DNMT3A at these actively transcribed sites occurs in a sequence-independent manner. Further characterization of the Fos ecRNA-DNMT3A interaction showed that Fos-1 ecRNA binds the DNMT3A tetramer interface and clinically relevant DNMT3A substitutions that disrupt the inhibition of DNMT3A activity by Fos-1 ecRNA are restored by the formation of heterotetramers with DNMT3L. Lastly, using DNMT3L and Fos ecRNA in the presence of synthetic histone H3 tails or reconstituted polynucleosomes, we found that regulatory RNAs play dominant roles in the modulation of DNMT3A activity.

Conclusion: Our results are consistent with a model for RNA regulation of DNMT3A that involves localized production of short RNAs binding to a nonspecific site on the protein, rather than formation of localized RNA/DNA structures. We propose that regulatory RNAs play a dominant role in the regulation of DNMT3A catalytic activity at sites with increased production of regulatory RNAs.

{"title":"Mechanism of non-coding RNA regulation of DNMT3A.","authors":"Jonathan E Sandoval, Nancy V N Carullo, Aaron J Salisbury, Jeremy J Day, Norbert O Reich","doi":"10.1186/s13072-025-00574-w","DOIUrl":"10.1186/s13072-025-00574-w","url":null,"abstract":"<p><strong>Background: </strong>De novo DNA methylation by DNMT3A is a fundamental epigenetic modification for transcriptional regulation. Histone tails and regulatory proteins regulate DNMT3A, and the crosstalk between these epigenetic mechanisms ensures appropriate DNA methylation patterning. Based on findings showing that Fos ecRNA inhibits DNMT3A activity in neurons, we sought to characterize the contribution of this regulatory RNA in the modulation of DNMT3A in the presence of regulatory proteins and histone tails.</p><p><strong>Results: </strong>We show that Fos ecRNA and mRNA strongly correlate in primary cortical neurons on a single cell level and provide evidence that Fos ecRNA modulation of DNMT3A at these actively transcribed sites occurs in a sequence-independent manner. Further characterization of the Fos ecRNA-DNMT3A interaction showed that Fos-1 ecRNA binds the DNMT3A tetramer interface and clinically relevant DNMT3A substitutions that disrupt the inhibition of DNMT3A activity by Fos-1 ecRNA are restored by the formation of heterotetramers with DNMT3L. Lastly, using DNMT3L and Fos ecRNA in the presence of synthetic histone H3 tails or reconstituted polynucleosomes, we found that regulatory RNAs play dominant roles in the modulation of DNMT3A activity.</p><p><strong>Conclusion: </strong>Our results are consistent with a model for RNA regulation of DNMT3A that involves localized production of short RNAs binding to a nonspecific site on the protein, rather than formation of localized RNA/DNA structures. We propose that regulatory RNAs play a dominant role in the regulation of DNMT3A catalytic activity at sites with increased production of regulatory RNAs.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"15"},"PeriodicalIF":4.2,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143732738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Function of HP1BP3 as a linker histone is regulated by linker histone chaperones, NPM1 and TAF-I.
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-03-27 DOI: 10.1186/s13072-025-00581-x
Miharu Hisaoka, Tetsuro Komatsu, Takuma Hashimoto, Jianhuang Lin, Yasuyuki Ohkawa, Mitsuru Okuwaki

Background: Linker histones constitute a class of proteins that are responsible for the formation of higher-order chromatin structures. Core histones are integral components of nucleosome core particles (NCPs), whereas linker histones bind to linker DNA between NCPs. Heterochromatin protein 1 binding protein 3 (HP1BP3) displays sequence similarity to linker histones, with the exception of the presence of three globular domains in its central region. However, the function of HP1BP3 as a linker histone has not been analyzed previously. The present study aimed to elucidate the function of full-length HP1BP3 as a linker histone variant.

Results: The results of biochemical analyses demonstrate that HP1BP3 efficiently binds to NCPs with similar efficiency as linker histones, thereby forming a chromatosome. Notwithstanding the presence of three globular domains, the results suggest that a single HP1BP3 binds to a single NCP under our biochemical assay condition. Moreover, our findings revealed that the NCP binding activity of HP1BP3 is regulated by linker histone chaperones, nucleophosmin (NPM1) and template activating factor-I (TAF-I). The globular domains and the C-terminal disordered region of HP1BP3 are responsible for binding to histone chaperones. Chromatin immunoprecipitation-sequence analyses demonstrated that HP1BP3 exhibited weak preferences for the genomic loci where histone H3 active modification marks were enriched, whereas a linker histone variant, H1.2, showed weak preferences for the genomic loci where histone H3 inactive modification marks were enriched. It is noteworthy that the preferential binding tendencies of HP1BP3 and H1.2 to active and inactive genomic loci, respectively, are diminished upon the knockdown of either NPM1 or TAF-I.

Conclusions: Our findings indicate that HP1BP3 functions as a linker histone variant and that the chromatin binding preference of linker histones, including HP1BP3, is regulated by linker histone chaperones.

{"title":"Function of HP1BP3 as a linker histone is regulated by linker histone chaperones, NPM1 and TAF-I.","authors":"Miharu Hisaoka, Tetsuro Komatsu, Takuma Hashimoto, Jianhuang Lin, Yasuyuki Ohkawa, Mitsuru Okuwaki","doi":"10.1186/s13072-025-00581-x","DOIUrl":"10.1186/s13072-025-00581-x","url":null,"abstract":"<p><strong>Background: </strong>Linker histones constitute a class of proteins that are responsible for the formation of higher-order chromatin structures. Core histones are integral components of nucleosome core particles (NCPs), whereas linker histones bind to linker DNA between NCPs. Heterochromatin protein 1 binding protein 3 (HP1BP3) displays sequence similarity to linker histones, with the exception of the presence of three globular domains in its central region. However, the function of HP1BP3 as a linker histone has not been analyzed previously. The present study aimed to elucidate the function of full-length HP1BP3 as a linker histone variant.</p><p><strong>Results: </strong>The results of biochemical analyses demonstrate that HP1BP3 efficiently binds to NCPs with similar efficiency as linker histones, thereby forming a chromatosome. Notwithstanding the presence of three globular domains, the results suggest that a single HP1BP3 binds to a single NCP under our biochemical assay condition. Moreover, our findings revealed that the NCP binding activity of HP1BP3 is regulated by linker histone chaperones, nucleophosmin (NPM1) and template activating factor-I (TAF-I). The globular domains and the C-terminal disordered region of HP1BP3 are responsible for binding to histone chaperones. Chromatin immunoprecipitation-sequence analyses demonstrated that HP1BP3 exhibited weak preferences for the genomic loci where histone H3 active modification marks were enriched, whereas a linker histone variant, H1.2, showed weak preferences for the genomic loci where histone H3 inactive modification marks were enriched. It is noteworthy that the preferential binding tendencies of HP1BP3 and H1.2 to active and inactive genomic loci, respectively, are diminished upon the knockdown of either NPM1 or TAF-I.</p><p><strong>Conclusions: </strong>Our findings indicate that HP1BP3 functions as a linker histone variant and that the chromatin binding preference of linker histones, including HP1BP3, is regulated by linker histone chaperones.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"14"},"PeriodicalIF":4.2,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143721990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysine crotonylation in disease: mechanisms, biological functions and therapeutic targets. 疾病中的赖氨酸巴豆酰化:机制、生物功能和治疗目标。
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-03-22 DOI: 10.1186/s13072-025-00577-7
Yu Ji, Shanshan Liu, Yiqiao Zhang, Yiyang Min, Luyang Wei, Chengjian Guan, Huajing Yu, Zhongtao Zhang

Lysine crotonylation (Kcr), a previously unknown post-translational modification (PTM), plays crucial roles in regulating cellular processes, including gene expression, chromatin remodeling, and cellular metabolism. Kcr is associated with various diseases, including neurodegenerative disorders, cancer, cardiovascular conditions, and metabolic syndromes. Despite advances in identifying crotonylation sites and their regulatory enzymes, the molecular mechanisms by which Kcr influences disease progression remain poorly understood. Understanding the interplay between Kcr and other acylation modifications may reveal opportunities for developing targeted therapies. This review synthesizes current research on Kcr, focusing on its regulatory mechanisms and disease associations, and highlights insights into future exploration in epigenetics and therapeutic interventions.

{"title":"Lysine crotonylation in disease: mechanisms, biological functions and therapeutic targets.","authors":"Yu Ji, Shanshan Liu, Yiqiao Zhang, Yiyang Min, Luyang Wei, Chengjian Guan, Huajing Yu, Zhongtao Zhang","doi":"10.1186/s13072-025-00577-7","DOIUrl":"10.1186/s13072-025-00577-7","url":null,"abstract":"<p><p>Lysine crotonylation (Kcr), a previously unknown post-translational modification (PTM), plays crucial roles in regulating cellular processes, including gene expression, chromatin remodeling, and cellular metabolism. Kcr is associated with various diseases, including neurodegenerative disorders, cancer, cardiovascular conditions, and metabolic syndromes. Despite advances in identifying crotonylation sites and their regulatory enzymes, the molecular mechanisms by which Kcr influences disease progression remain poorly understood. Understanding the interplay between Kcr and other acylation modifications may reveal opportunities for developing targeted therapies. This review synthesizes current research on Kcr, focusing on its regulatory mechanisms and disease associations, and highlights insights into future exploration in epigenetics and therapeutic interventions.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"13"},"PeriodicalIF":4.2,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical exercise and epigenetic modifications in skeletal muscle, brain, and heart.
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-03-21 DOI: 10.1186/s13072-025-00576-8
Xi Zheng, Xueli Liu, Yuqian Guo, Yi Lv, Chensheng Lin, Dan Wang, Shaobing Wang, Yiping Liu, Xuefeng Hu

The origins of many diseases can be traced to the dynamic interplay of genetic predispositions and environmental exposures post-birth. Epigenetic modifications have recently gained prominence as a significant mediator between genetic information and environmental factors, influencing the occurrence and progression of disease. There is a burgeoning body of evidence supports that physical exercise, acting as an external environmental stimulus, exerts a discernible impact on major epigenetic modifications, including histone modifications, DNA methylation, RNA methylation, and non-coding RNA. This effect assumes a pivotal role in the pathogenesis of various human diseases. Exploring the epigenetic molecular mechanisms through which physical exercise enhances human health holds the promise of deepening our understanding of how it improves physiological functions, mitigates disease risks, and establishes a theoretical foundation for employing physical exercise as a non-pharmacological intervention in disease prevention and treatment.

{"title":"Physical exercise and epigenetic modifications in skeletal muscle, brain, and heart.","authors":"Xi Zheng, Xueli Liu, Yuqian Guo, Yi Lv, Chensheng Lin, Dan Wang, Shaobing Wang, Yiping Liu, Xuefeng Hu","doi":"10.1186/s13072-025-00576-8","DOIUrl":"10.1186/s13072-025-00576-8","url":null,"abstract":"<p><p>The origins of many diseases can be traced to the dynamic interplay of genetic predispositions and environmental exposures post-birth. Epigenetic modifications have recently gained prominence as a significant mediator between genetic information and environmental factors, influencing the occurrence and progression of disease. There is a burgeoning body of evidence supports that physical exercise, acting as an external environmental stimulus, exerts a discernible impact on major epigenetic modifications, including histone modifications, DNA methylation, RNA methylation, and non-coding RNA. This effect assumes a pivotal role in the pathogenesis of various human diseases. Exploring the epigenetic molecular mechanisms through which physical exercise enhances human health holds the promise of deepening our understanding of how it improves physiological functions, mitigates disease risks, and establishes a theoretical foundation for employing physical exercise as a non-pharmacological intervention in disease prevention and treatment.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"12"},"PeriodicalIF":4.2,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143671466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative analysis of gene expression and chromatin dynamics multi-omics data in mouse models of bleomycin-induced lung fibrosis.
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-03-12 DOI: 10.1186/s13072-025-00579-5
Zhongzheng Li, Mengke Zhang, Yujie Zhang, Yulong Gan, Zhao Zhu, Jiawei Wang, Yanlin Zhou, Guoying Yu, Lan Wang

Background: Pulmonary fibrosis is a relentless and ultimately fatal lung disorder. Despite a wealth of research, the intricate molecular pathways that contribute to the onset of PF, especially the aspects related to epigenetic modifications and chromatin dynamics, continue to be elusive and not fully understood.

Methods: Utilizing a bleomycin-induced pulmonary fibrosis model, we conducted a comprehensive analysis of the interplay between chromatin structure, chromatin accessibility, gene expression patterns, and cellular heterogeneity. Our chromatin structure analysis included 5 samples (2 control and 3 bleomycin-treated), while accessibility and expression analysis included 6 samples each (3 control and 3 bleomycin-treated).

Results: We found that chromatin architecture, with its alterations in compartmentalization and accessibility, is positively correlated with genome-wide gene expression changes during fibrosis. The importance of immune system inflammation and extracellular matrix reorganization in fibrosis is underscored by these chromatin alterations. Transcription factors such as PU.1, AP-1, and IRF proteins, which are pivotal in immune regulation, are associated with an increased abundance of their motifs in accessible genomic regions and are correlated with highly expressed genes.

Conclusions: We identified 14 genes that demonstrated consistent changes in their expression, accessibility, and compartmentalization, suggesting their potential as promising targets for the development of treatments for lung fibrosis.

{"title":"Integrative analysis of gene expression and chromatin dynamics multi-omics data in mouse models of bleomycin-induced lung fibrosis.","authors":"Zhongzheng Li, Mengke Zhang, Yujie Zhang, Yulong Gan, Zhao Zhu, Jiawei Wang, Yanlin Zhou, Guoying Yu, Lan Wang","doi":"10.1186/s13072-025-00579-5","DOIUrl":"10.1186/s13072-025-00579-5","url":null,"abstract":"<p><strong>Background: </strong>Pulmonary fibrosis is a relentless and ultimately fatal lung disorder. Despite a wealth of research, the intricate molecular pathways that contribute to the onset of PF, especially the aspects related to epigenetic modifications and chromatin dynamics, continue to be elusive and not fully understood.</p><p><strong>Methods: </strong>Utilizing a bleomycin-induced pulmonary fibrosis model, we conducted a comprehensive analysis of the interplay between chromatin structure, chromatin accessibility, gene expression patterns, and cellular heterogeneity. Our chromatin structure analysis included 5 samples (2 control and 3 bleomycin-treated), while accessibility and expression analysis included 6 samples each (3 control and 3 bleomycin-treated).</p><p><strong>Results: </strong>We found that chromatin architecture, with its alterations in compartmentalization and accessibility, is positively correlated with genome-wide gene expression changes during fibrosis. The importance of immune system inflammation and extracellular matrix reorganization in fibrosis is underscored by these chromatin alterations. Transcription factors such as PU.1, AP-1, and IRF proteins, which are pivotal in immune regulation, are associated with an increased abundance of their motifs in accessible genomic regions and are correlated with highly expressed genes.</p><p><strong>Conclusions: </strong>We identified 14 genes that demonstrated consistent changes in their expression, accessibility, and compartmentalization, suggesting their potential as promising targets for the development of treatments for lung fibrosis.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"11"},"PeriodicalIF":4.2,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Dissecting the Kaiso binding profle in clear renal cancer cells.
IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-03-12 DOI: 10.1186/s13072-025-00578-6
Alexey Starshin, Pavel Abramov, Yaroslava Lobanova, Fedor Sharko, Galina Filonova, Dmitry Kaluzhny, Daria Kaplun, Igor Deyev, Alexander Mazur, Egor Prokhortchou, Svetlana Zhenilo
{"title":"Correction: Dissecting the Kaiso binding profle in clear renal cancer cells.","authors":"Alexey Starshin, Pavel Abramov, Yaroslava Lobanova, Fedor Sharko, Galina Filonova, Dmitry Kaluzhny, Daria Kaplun, Igor Deyev, Alexander Mazur, Egor Prokhortchou, Svetlana Zhenilo","doi":"10.1186/s13072-025-00578-6","DOIUrl":"10.1186/s13072-025-00578-6","url":null,"abstract":"","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"10"},"PeriodicalIF":4.2,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Epigenetics & Chromatin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1