{"title":"Mechanics of leukemic T-cell","authors":"Van-Chien Bui, Thi-Huong Nguyen","doi":"10.1002/jmr.3019","DOIUrl":null,"url":null,"abstract":"<p>Cell mechanics is a factor that determines cell growth, migration, proliferation, or differentiation, as well as trafficking inside the cytoplasm and organization of organelles. Knowledge about cell mechanics is critical to gaining insight into these biological processes. Here, we used atomic force microscopy to examine the elasticity, an important parameter of cell mechanics, of non-adherent Jurkat leukemic T-cells in both interphase and mitotic phases. We found that the elasticity of an individual cell does not significantly change at interphase. When a cell starts to divide, its elasticity increases in the transition from metaphase to telophase during normal division while the cell is stiffened right after it enters mitosis during abnormal division. At the end of the division, the cell elasticity gradually returned to the value of the mother cell. These changes may originate from the changes in cell surface tension during modulating actomyosin at the cleavage furrow, redistributing cell organelles, and constricting the contractile ring to sever mother cell to form daughters. The difference in elasticity patterns suggests that there is a discrepancy in the redistribution of the cell organelles during normal and abnormal division.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.3019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3019","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell mechanics is a factor that determines cell growth, migration, proliferation, or differentiation, as well as trafficking inside the cytoplasm and organization of organelles. Knowledge about cell mechanics is critical to gaining insight into these biological processes. Here, we used atomic force microscopy to examine the elasticity, an important parameter of cell mechanics, of non-adherent Jurkat leukemic T-cells in both interphase and mitotic phases. We found that the elasticity of an individual cell does not significantly change at interphase. When a cell starts to divide, its elasticity increases in the transition from metaphase to telophase during normal division while the cell is stiffened right after it enters mitosis during abnormal division. At the end of the division, the cell elasticity gradually returned to the value of the mother cell. These changes may originate from the changes in cell surface tension during modulating actomyosin at the cleavage furrow, redistributing cell organelles, and constricting the contractile ring to sever mother cell to form daughters. The difference in elasticity patterns suggests that there is a discrepancy in the redistribution of the cell organelles during normal and abnormal division.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.