首页 > 最新文献

Journal of Molecular Recognition最新文献

英文 中文
Probing the Molecular Basis of Aminoacyl-Adenylate Affinity With Mycobacterium tuberculosis Leucyl-tRNA Synthetase Employing Molecular Dynamics, Umbrella Sampling Simulations and Site-Directed Mutagenesis. 利用分子动力学、伞状取样模拟和定点突变,探究结核分枝杆菌亮氨酰-tRNA 合成酶的氨基酰-腺苷酸亲和力的分子基础。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-31 DOI: 10.1002/jmr.3110
Galyna P Volynets, Olga I Gudzera, Mariia O Usenko, Oksana B Gorbatiuk, Volodymyr G Bdzhola, Igor M Kotey, Anatoliy O Balanda, Andrii O Prykhod'ko, Sergiy S Lukashov, Oleksiy A Chuk, Oleksandra I Skydanovych, Ganna D Yaremchuk, Sergiy M Yarmoluk, Michael A Tukalo

Leucyl-tRNA synthetase (LeuRS) is clinically validated molecular target for antibiotic development. Recently, we have reported several classes of small-molecular inhibitors targeting aminoacyl-adenylate binding site of Mycobacterium tuberculosis LeuRS with antibacterial activity. In this work, we performed in silico site-directed mutagenesis of M. tuberculosis LeuRS synthetic site in order to identify the most critical amino acid residues for the interaction with substrate and prove binding modes of inhibitors. We carried out 20-ns molecular dynamics (MD) simulations and used umbrella sampling (US) method for the calculation of the binding free energy (ΔGb) of leucyl-adenylate with wild-type and mutated forms of LeuRS. According to molecular modeling results, it was found that His89, Tyr93, and Glu660 are essential amino acid residues both for aminoacyl-adenylate affinity and hydrogen bond formation. We have selected His89 for experimental site-directed mutagenesis since according to our previous molecular docking results this amino acid residue was predicted to be important for inhibitor interaction in adenine-binding region. We obtained recombinant mutant M. tuberculosis LeuRS H89A. Using aminoacylation assay we have found that the mutation of His89 to Ala in the active site of M. tuberculosis LeuRS results in significant decrease of inhibitory activity for compounds belonging to three different chemical classes-3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazoles, N-benzylidene-N'-thiazol-2-yl-hydrazines, and 1-oxo-1H-isothiochromene-3-carboxylic acid (4-phenyl-thiazol-2-yl)-amide derivatives. Therefore, the interaction with His89 should be taken into account during further M. tuberculosis LeuRS inhibitors development and optimization.

亮氨酰-tRNA 合成酶(LeuRS)是临床验证的抗生素开发分子靶点。最近,我们报道了几类针对结核分枝杆菌 LeuRS 氨基酰-腺苷酸结合位点的小分子抑制剂,它们具有抗菌活性。在这项工作中,我们对结核分枝杆菌 LeuRS 合成位点进行了默克位点定向诱变,以确定与底物相互作用的最关键氨基酸残基,并证明抑制剂的结合模式。我们进行了 20-ns 分子动力学(MD)模拟,并采用伞状取样(US)方法计算了亮基腺苷酸与野生型和突变型 LeuRS 的结合自由能(ΔGb)。根据分子建模结果发现,His89、Tyr93 和 Glu660 是氨基酰-腺苷酸亲和力和氢键形成的必需氨基酸残基。我们选择 His89 进行定点突变实验,因为根据之前的分子对接结果,该氨基酸残基被认为是腺嘌呤结合区抑制剂相互作用的重要氨基酸残基。我们获得了重组的突变型结核杆菌 LeuRS H89A。通过氨基酰化试验,我们发现在 M. tuberculosis LeuRS 的活性位点上,将 His89 突变为 Ala 会导致 M. tuberculosis LeuRS 的基因突变。通过氨基酰化试验,我们发现在结核杆菌 LeuRS 的活性位点上,His89 突变为 Ala 会导致对属于三种不同化学类别的化合物的抑制活性显著降低-3-苯基-5-(1-苯基-1H-[1,2,3]三唑-4-基)-[1,2,4]恶二唑、N-亚苄基-N'-噻唑-2-基肼和 1-氧代-1H-异硫代苯并吡喃-3-羧酸(4-苯基-噻唑-2-基)-酰胺衍生物。因此,在进一步开发和优化结核杆菌 LeuRS 抑制剂时,应考虑到与 His89 的相互作用。
{"title":"Probing the Molecular Basis of Aminoacyl-Adenylate Affinity With Mycobacterium tuberculosis Leucyl-tRNA Synthetase Employing Molecular Dynamics, Umbrella Sampling Simulations and Site-Directed Mutagenesis.","authors":"Galyna P Volynets, Olga I Gudzera, Mariia O Usenko, Oksana B Gorbatiuk, Volodymyr G Bdzhola, Igor M Kotey, Anatoliy O Balanda, Andrii O Prykhod'ko, Sergiy S Lukashov, Oleksiy A Chuk, Oleksandra I Skydanovych, Ganna D Yaremchuk, Sergiy M Yarmoluk, Michael A Tukalo","doi":"10.1002/jmr.3110","DOIUrl":"https://doi.org/10.1002/jmr.3110","url":null,"abstract":"<p><p>Leucyl-tRNA synthetase (LeuRS) is clinically validated molecular target for antibiotic development. Recently, we have reported several classes of small-molecular inhibitors targeting aminoacyl-adenylate binding site of Mycobacterium tuberculosis LeuRS with antibacterial activity. In this work, we performed in silico site-directed mutagenesis of M. tuberculosis LeuRS synthetic site in order to identify the most critical amino acid residues for the interaction with substrate and prove binding modes of inhibitors. We carried out 20-ns molecular dynamics (MD) simulations and used umbrella sampling (US) method for the calculation of the binding free energy (ΔGb) of leucyl-adenylate with wild-type and mutated forms of LeuRS. According to molecular modeling results, it was found that His89, Tyr93, and Glu660 are essential amino acid residues both for aminoacyl-adenylate affinity and hydrogen bond formation. We have selected His89 for experimental site-directed mutagenesis since according to our previous molecular docking results this amino acid residue was predicted to be important for inhibitor interaction in adenine-binding region. We obtained recombinant mutant M. tuberculosis LeuRS H89A. Using aminoacylation assay we have found that the mutation of His89 to Ala in the active site of M. tuberculosis LeuRS results in significant decrease of inhibitory activity for compounds belonging to three different chemical classes-3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazoles, N-benzylidene-N'-thiazol-2-yl-hydrazines, and 1-oxo-1H-isothiochromene-3-carboxylic acid (4-phenyl-thiazol-2-yl)-amide derivatives. Therefore, the interaction with His89 should be taken into account during further M. tuberculosis LeuRS inhibitors development and optimization.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Circular RNA MMP9 in Glioblastoma Progression: From Interaction With hnRNPC and hnRNPA1 to Affecting the Expression of BIRC5 by Sequestering miR-149. 环状 RNA MMP9 在胶质母细胞瘤进展中的作用:从与 hnRNPC 和 hnRNPA1 相互作用到通过螯合 miR-149 影响 BIRC5 的表达。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-14 DOI: 10.1002/jmr.3109
Javad Amini, Nikta Zafarjafarzadeh, Sara Ghahramanlu, Omid Mohammadalizadeh, Elaheh Mozaffari, Bahram Bibak, Nima Sanadgol

Glioblastoma multiforme (GBM) presents a significant challenge in neuro-oncology due to its aggressive behavior and self-renewal capacity. Circular RNAs (circRNAs), a subset of non-coding RNAs (ncRNAs) generated through mRNA back-splicing, are gaining attention as potential targets for GBM research. In our study, we sought to explore the functional role of circMMP9 (circular form of matrix metalloproteinase-9) as a promising therapeutic target for GBM through bioinformatic predictions and human data analysis. Our results suggest that circMMP9 functions as a sponge for miR-149 and miR-542, both upregulated in GBM based on microarray data. Kaplan-Meier analysis indicated that reduced levels of miR-149 and miR-542 correlate with worse survival outcomes in GBM, suggesting their role as tumor suppressors. Importantly, miR-149 has been demonstrated to inhibit the expression of BIRC5 (baculoviral inhibitor of apoptosis repeat-containing 5 or survivin), a significant promoter of proliferation in GBM. BIRC5 is not only upregulated in GBM but also in various other cancers, including neuroblastoma and other brain cancers. Our protein-protein interaction analysis highlights the significance of BIRC5 as a central hub gene in GBM. CircMMP9 seems to influence this complex relationship by suppressing miR-149 and miR-542, despite their increased expression in GBM. Additionally, we found that circMMP9 directly interacts with heterogeneous nuclear ribonucleoproteins C and A1 (hnRNPC and A1), although not within their protein-binding domains. This suggests that hnRNPC/A1 may play a role in transporting circMMP9. Moreover, RNA-seq data from GBM patient samples confirmed the increased expression of BIRC5, PIK3CB, and hnRNPC/A1, further emphasizing the potential therapeutic significance of circMMP9 in GBM. In this study, we propose for the first time a new epigenetic regulatory role for circMMP9, highlighting a novel aspect of its oncogenic function. circMMP9 may regulate BIRC5 expression in GBM by sponging miR-149 and miR-542. BIRC5, in turn, suppresses apoptosis and enhances proliferation in GBM. Nonetheless, more extensive studies are advised to delve deeper into the roles of circMMP9, especially in the context of glioma.

多形性胶质母细胞瘤(GBM)具有侵袭性和自我更新能力,是神经肿瘤学领域的重大挑战。环状 RNA(circRNA)是通过 mRNA 反向剪接产生的非编码 RNA(ncRNA)的一个子集,作为 GBM 研究的潜在靶点正日益受到关注。在我们的研究中,我们试图通过生物信息学预测和人类数据分析,探索circMMP9(基质金属蛋白酶-9的环形形式)作为GBM的一个有希望的治疗靶点的功能作用。我们的研究结果表明,circMMP9对miR-149和miR-542起着海绵作用,而根据微阵列数据,miR-149和miR-542在GBM中均上调。Kaplan-Meier分析表明,miR-149和miR-542水平的降低与GBM存活率的下降相关,这表明它们具有肿瘤抑制因子的作用。重要的是,miR-149 已被证明能抑制 BIRC5(含凋亡重复 5 的杆状病毒抑制因子或存活素)的表达,而 BIRC5 是 GBM 中增殖的重要促进因子。BIRC5 不仅在 GBM 中上调,在其他各种癌症中也是如此,包括神经母细胞瘤和其他脑癌。我们的蛋白-蛋白相互作用分析凸显了 BIRC5 作为 GBM 中心枢纽基因的重要性。尽管miR-149和miR-542在GBM中的表达量增加,但CircMMP9似乎通过抑制miR-149和miR-542来影响这种复杂的关系。此外,我们还发现,circMMP9 与异质核核糖核蛋白 C 和 A1(hnRNPC 和 A1)直接相互作用,尽管不是在它们的蛋白结合域内。这表明 hnRNPC/A1 可能在运输 circMMP9 方面发挥作用。此外,来自 GBM 患者样本的 RNA-seq 数据证实了 BIRC5、PIK3CB 和 hnRNPC/A1 的表达增加,这进一步强调了 circMMP9 在 GBM 中的潜在治疗意义。在这项研究中,我们首次提出了 circMMP9 的一种新的表观遗传调控作用,强调了其致癌功能的一个新方面。反过来,BIRC5 又会抑制 GBM 中的细胞凋亡并促进其增殖。然而,要深入研究 circMMP9 的作用,尤其是在胶质瘤中的作用,还需要进行更广泛的研究。
{"title":"Role of Circular RNA MMP9 in Glioblastoma Progression: From Interaction With hnRNPC and hnRNPA1 to Affecting the Expression of BIRC5 by Sequestering miR-149.","authors":"Javad Amini, Nikta Zafarjafarzadeh, Sara Ghahramanlu, Omid Mohammadalizadeh, Elaheh Mozaffari, Bahram Bibak, Nima Sanadgol","doi":"10.1002/jmr.3109","DOIUrl":"https://doi.org/10.1002/jmr.3109","url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) presents a significant challenge in neuro-oncology due to its aggressive behavior and self-renewal capacity. Circular RNAs (circRNAs), a subset of non-coding RNAs (ncRNAs) generated through mRNA back-splicing, are gaining attention as potential targets for GBM research. In our study, we sought to explore the functional role of circMMP9 (circular form of matrix metalloproteinase-9) as a promising therapeutic target for GBM through bioinformatic predictions and human data analysis. Our results suggest that circMMP9 functions as a sponge for miR-149 and miR-542, both upregulated in GBM based on microarray data. Kaplan-Meier analysis indicated that reduced levels of miR-149 and miR-542 correlate with worse survival outcomes in GBM, suggesting their role as tumor suppressors. Importantly, miR-149 has been demonstrated to inhibit the expression of BIRC5 (baculoviral inhibitor of apoptosis repeat-containing 5 or survivin), a significant promoter of proliferation in GBM. BIRC5 is not only upregulated in GBM but also in various other cancers, including neuroblastoma and other brain cancers. Our protein-protein interaction analysis highlights the significance of BIRC5 as a central hub gene in GBM. CircMMP9 seems to influence this complex relationship by suppressing miR-149 and miR-542, despite their increased expression in GBM. Additionally, we found that circMMP9 directly interacts with heterogeneous nuclear ribonucleoproteins C and A1 (hnRNPC and A1), although not within their protein-binding domains. This suggests that hnRNPC/A1 may play a role in transporting circMMP9. Moreover, RNA-seq data from GBM patient samples confirmed the increased expression of BIRC5, PIK3CB, and hnRNPC/A1, further emphasizing the potential therapeutic significance of circMMP9 in GBM. In this study, we propose for the first time a new epigenetic regulatory role for circMMP9, highlighting a novel aspect of its oncogenic function. circMMP9 may regulate BIRC5 expression in GBM by sponging miR-149 and miR-542. BIRC5, in turn, suppresses apoptosis and enhances proliferation in GBM. Nonetheless, more extensive studies are advised to delve deeper into the roles of circMMP9, especially in the context of glioma.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting Human Papillomavirus 33 E2 DNA Binding Domain With Polyphenols: Unveiling Interactions Through Biophysical and In Silico Methods. 多酚靶向人类乳头瘤病毒 33 E2 DNA 结合域:通过生物物理和硅学方法揭示相互作用。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-13 DOI: 10.1002/jmr.3106
Bharti, Maya S Nair

The human papillomavirus (HPV) 33 is a high-risk strain that causes lesions with potential cancerous outcomes. Its E2 protein regulates the viral protein transcription and life cycle maintenance. The DNA binding domain (DBD) of the E2 protein plays a crucial role in the viral life cycle. The DBD region of the E2 protein is particularly interesting for targeting and finding potential inhibitors to inhibit its function or dimerization. Given the limited research on HPV 33 and its proteins, the present work delved into the interaction of two natural polyphenolic compounds, resveratrol, and baicalein, with the E2 DBD of HPV 33 using biophysical and in silico studies. Fluorescence studies of the E2 DBD-polyphenol complexes showed fluorescence quenching with a binding constant of the order of 106 M-1. Circular dichroism data reveal conformational changes upon binding with the polyphenols, possibly due to distinct binding sites of the E2 DBD. Differential scanning calorimetry exhibited higher melting temperatures for the two complexes than alone DBD, suggesting the complexes' stability. ITC experiment suggested favorable binding reactions with kd values in the micromolar range. Molecular docking and dynamic simulation studies revealed that the resveratrol binds to the helical region and baicalein near the central dimeric interface of E2 DBD with a good binding affinity, forming a stable protein-ligand complex during the run of 100 ns simulation. Therefore, the current study identifies both polyphenolic compounds as promising candidates for potential antiviral drug development.

人类乳头瘤病毒(HPV)33 是一种高危病毒,可导致潜在癌变的病变。其 E2 蛋白调节病毒蛋白的转录和生命周期的维持。E2 蛋白的 DNA 结合域(DBD)在病毒生命周期中起着至关重要的作用。E2 蛋白的 DBD 区域对于靶向和寻找潜在抑制剂以抑制其功能或二聚化尤为重要。鉴于对 HPV 33 及其蛋白的研究有限,本研究采用生物物理研究和硅学研究深入探讨了白藜芦醇和黄芩素这两种天然多酚化合物与 HPV 33 的 E2 DBD 的相互作用。E2 DBD-多酚复合物的荧光研究显示,结合常数为 106 M-1 的荧光淬灭。圆二色性数据显示了与多酚结合后的构象变化,这可能是由于 E2 DBD 具有不同的结合位点。差示扫描量热法显示,两种复合物的熔化温度高于单独的 DBD,这表明复合物具有稳定性。ITC 实验表明结合反应良好,kd 值在微摩尔范围内。分子对接和动态模拟研究表明,白藜芦醇以良好的结合亲和力与 E2 DBD 中央二聚体界面附近的螺旋区和黄芩素结合,在 100 ns 模拟运行期间形成了稳定的蛋白质配体复合物。因此,本研究将这两种多酚类化合物确定为潜在抗病毒药物开发的候选化合物。
{"title":"Targeting Human Papillomavirus 33 E2 DNA Binding Domain With Polyphenols: Unveiling Interactions Through Biophysical and In Silico Methods.","authors":"Bharti, Maya S Nair","doi":"10.1002/jmr.3106","DOIUrl":"https://doi.org/10.1002/jmr.3106","url":null,"abstract":"<p><p>The human papillomavirus (HPV) 33 is a high-risk strain that causes lesions with potential cancerous outcomes. Its E2 protein regulates the viral protein transcription and life cycle maintenance. The DNA binding domain (DBD) of the E2 protein plays a crucial role in the viral life cycle. The DBD region of the E2 protein is particularly interesting for targeting and finding potential inhibitors to inhibit its function or dimerization. Given the limited research on HPV 33 and its proteins, the present work delved into the interaction of two natural polyphenolic compounds, resveratrol, and baicalein, with the E2 DBD of HPV 33 using biophysical and in silico studies. Fluorescence studies of the E2 DBD-polyphenol complexes showed fluorescence quenching with a binding constant of the order of 10<sup>6</sup> M<sup>-1</sup>. Circular dichroism data reveal conformational changes upon binding with the polyphenols, possibly due to distinct binding sites of the E2 DBD. Differential scanning calorimetry exhibited higher melting temperatures for the two complexes than alone DBD, suggesting the complexes' stability. ITC experiment suggested favorable binding reactions with k<sub>d</sub> values in the micromolar range. Molecular docking and dynamic simulation studies revealed that the resveratrol binds to the helical region and baicalein near the central dimeric interface of E2 DBD with a good binding affinity, forming a stable protein-ligand complex during the run of 100 ns simulation. Therefore, the current study identifies both polyphenolic compounds as promising candidates for potential antiviral drug development.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward Understanding the Mechanism of Client-Selective Small Molecule Inhibitors of the Sec61 Translocon. 了解 Sec61 Translocon 的客户选择性小分子抑制剂的机制。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-12 DOI: 10.1002/jmr.3108
Nidhi Sorout, Volkhard Helms

The Sec61 translocon mediates the translocation of numerous, newly synthesized precursor proteins into the lumen of the endoplasmic reticulum or their integration into its membrane. Recently, structural biology revealed conformations of idle or substrate-engaged Sec61, and likewise its interactions with the accessory membrane proteins Sec62, Sec63, and TRAP, respectively. Several natural and synthetic small molecules have been shown to block Sec61-mediated protein translocation. Since this is a key step in protein biogenesis, broad inhibition is generally cytotoxic, which may be problematic for a putative drug target. Interestingly, several compounds exhibit client-selective modes of action, such that only translocation of certain precursor proteins was affected. Here, we discuss recent advances of structural biology, molecular modelling, and molecular screening that aim to use Sec61 as feasible drug target.

Sec61 转座子介导大量新合成的前体蛋白转座到内质网腔内或整合到内质网膜上。最近,结构生物学揭示了空闲或底物参与的 Sec61 的构象,以及它分别与附属膜蛋白 Sec62、Sec63 和 TRAP 的相互作用。一些天然和合成的小分子已被证明能阻断 Sec61 介导的蛋白质转运。由于这是蛋白质生物发生过程中的关键步骤,广泛的抑制作用通常具有细胞毒性,这可能会给药物靶点带来问题。有趣的是,有几种化合物表现出了客户选择性的作用模式,例如只有某些前体蛋白的转运受到影响。在此,我们讨论了结构生物学、分子建模和分子筛选方面的最新进展,旨在将 Sec61 作为可行的药物靶点。
{"title":"Toward Understanding the Mechanism of Client-Selective Small Molecule Inhibitors of the Sec61 Translocon.","authors":"Nidhi Sorout, Volkhard Helms","doi":"10.1002/jmr.3108","DOIUrl":"https://doi.org/10.1002/jmr.3108","url":null,"abstract":"<p><p>The Sec61 translocon mediates the translocation of numerous, newly synthesized precursor proteins into the lumen of the endoplasmic reticulum or their integration into its membrane. Recently, structural biology revealed conformations of idle or substrate-engaged Sec61, and likewise its interactions with the accessory membrane proteins Sec62, Sec63, and TRAP, respectively. Several natural and synthetic small molecules have been shown to block Sec61-mediated protein translocation. Since this is a key step in protein biogenesis, broad inhibition is generally cytotoxic, which may be problematic for a putative drug target. Interestingly, several compounds exhibit client-selective modes of action, such that only translocation of certain precursor proteins was affected. Here, we discuss recent advances of structural biology, molecular modelling, and molecular screening that aim to use Sec61 as feasible drug target.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computer-Aided Design of VEGFR-2 Inhibitors as Anticancer Agents: A Review. 作为抗癌药物的 VEGFR-2 抑制剂的计算机辅助设计:综述。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-10 DOI: 10.1002/jmr.3104
Abdullahi Ibrahim Uba

Due to its intricate molecular and structural characteristics, vascular endothelial growth factor receptor 2 (VEGFR-2) is essential for the development of new blood vessels in various pathological processes and conditions, especially in cancers. VEGFR-2 inhibitors have demonstrated significant anticancer effects by blocking many signaling pathways linked to tumor growth, metastasis, and angiogenesis. Several small compounds, including the well-tolerated sunitinib and sorafenib, have been approved as VEGFR-2 inhibitors. However, the widespread side effects linked to these VEGFR-2 inhibitors-hypertension, epistaxis, proteinuria, and upper respiratory infection-motivate researchers to search for new VEGFR-2 inhibitors with better pharmacokinetic profiles. The key molecular interactions required for the interaction of the small molecules with the protein target to produce the desired pharmacological effects are identified using computer-aided drug design (CADD) methods such as pharmacophore and QSAR modeling, structure-based virtual screening, molecular docking, molecular dynamics (MD) simulation coupled with MM/PB(GB)SA, and other computational strategies. This review discusses the applications of these methods for VEGFR-2 inhibitor design. Future VEGFR-2 inhibitor designs may be influenced by this review, which focuses on the current trends of using multiple screening layers to design better inhibitors.

血管内皮生长因子受体 2(VEGFR-2)具有错综复杂的分子和结构特征,在各种病理过程和条件下,尤其是在癌症中,它对新血管的发育至关重要。血管内皮生长因子受体 2 抑制剂通过阻断与肿瘤生长、转移和血管生成有关的多种信号通路,显示出显著的抗癌效果。包括耐受性良好的舒尼替尼和索拉非尼在内的几种小分子化合物已被批准为 VEGFR-2 抑制剂。然而,这些 VEGFR-2 抑制剂普遍存在副作用--高血压、鼻衄、蛋白尿和上呼吸道感染,这促使研究人员寻找药代动力学特征更好的新型 VEGFR-2 抑制剂。利用计算机辅助药物设计(CADD)方法,如药理和 QSAR 建模、基于结构的虚拟筛选、分子对接、分子动力学(MD)模拟与 MM/PB(GB)SA,以及其他计算策略,可以确定小分子与蛋白质靶点相互作用产生预期药理效应所需的关键分子相互作用。本综述讨论了这些方法在 VEGFR-2 抑制剂设计中的应用。未来的 VEGFR-2 抑制剂设计可能会受到本综述的影响,本综述侧重于当前使用多重筛选层来设计更好的抑制剂的趋势。
{"title":"Computer-Aided Design of VEGFR-2 Inhibitors as Anticancer Agents: A Review.","authors":"Abdullahi Ibrahim Uba","doi":"10.1002/jmr.3104","DOIUrl":"https://doi.org/10.1002/jmr.3104","url":null,"abstract":"<p><p>Due to its intricate molecular and structural characteristics, vascular endothelial growth factor receptor 2 (VEGFR-2) is essential for the development of new blood vessels in various pathological processes and conditions, especially in cancers. VEGFR-2 inhibitors have demonstrated significant anticancer effects by blocking many signaling pathways linked to tumor growth, metastasis, and angiogenesis. Several small compounds, including the well-tolerated sunitinib and sorafenib, have been approved as VEGFR-2 inhibitors. However, the widespread side effects linked to these VEGFR-2 inhibitors-hypertension, epistaxis, proteinuria, and upper respiratory infection-motivate researchers to search for new VEGFR-2 inhibitors with better pharmacokinetic profiles. The key molecular interactions required for the interaction of the small molecules with the protein target to produce the desired pharmacological effects are identified using computer-aided drug design (CADD) methods such as pharmacophore and QSAR modeling, structure-based virtual screening, molecular docking, molecular dynamics (MD) simulation coupled with MM/PB(GB)SA, and other computational strategies. This review discusses the applications of these methods for VEGFR-2 inhibitor design. Future VEGFR-2 inhibitor designs may be influenced by this review, which focuses on the current trends of using multiple screening layers to design better inhibitors.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CDR L3 Loop Rearrangement Switches Multispecific SPE-7 IgE Antibody From Hapten to Protein Binding CDR L3 环重排将多特异性 SPE-7 IgE 抗体从合蛋白结合转变为蛋白结合。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-07 DOI: 10.1002/jmr.3107
Clarissa A. Seidler, Klaus R. Liedl

The monoclonal IgE antibody SPE-7 was originally raised against a 2,4-dinitrophenyl (DNP) target. Through its ability to adopt multiple conformations, the antibody is capable of binding to a diverse range of small haptens and large proteins. The present study examines a dataset of experimentally determined crystal structures of the SPE-7 antibody to gain insight into the mechanisms that contribute to its multispecificity. With the emergence of more and more therapeutic antibodies against a huge repertoire of different targets, our research could be of great interest for future drug development. We are able to discriminate between the different paratope-binding states in the conformational ensembles obtained by enhanced sampling molecular dynamics simulations, and to calculate their transition timescales and state probabilities. Furthermore, we describe the key residues responsible for discriminating between the different binding capacities and identify a tryptophan in a central position of the CDR L3 loop as the residue of greatest interest. The overall dynamics of the paratope appear to be mainly influenced by the CDR L3 and CDR L1 loops.

单克隆 IgE 抗体 SPE-7 最初是针对 2,4-二硝基苯(DNP)靶点培养的。由于该抗体能够采用多种构象,因此能够与多种小型合体和大型蛋白质结合。本研究通过对实验测定的 SPE-7 抗体晶体结构数据集进行研究,以深入了解导致其多特异性的机制。随着越来越多针对不同靶点的治疗性抗体的出现,我们的研究对未来的药物开发具有重要意义。通过增强采样分子动力学模拟获得的构象组合,我们能够区分不同的副肽结合态,并计算出它们的转换时间尺度和状态概率。此外,我们还描述了区分不同结合能力的关键残基,并确定了 CDR L3 环中心位置的色氨酸是最值得关注的残基。副位点的整体动力学似乎主要受 CDR L3 和 CDR L1 环的影响。
{"title":"CDR L3 Loop Rearrangement Switches Multispecific SPE-7 IgE Antibody From Hapten to Protein Binding","authors":"Clarissa A. Seidler,&nbsp;Klaus R. Liedl","doi":"10.1002/jmr.3107","DOIUrl":"10.1002/jmr.3107","url":null,"abstract":"<p>The monoclonal IgE antibody SPE-7 was originally raised against a 2,4-dinitrophenyl (DNP) target. Through its ability to adopt multiple conformations, the antibody is capable of binding to a diverse range of small haptens and large proteins. The present study examines a dataset of experimentally determined crystal structures of the SPE-7 antibody to gain insight into the mechanisms that contribute to its multispecificity. With the emergence of more and more therapeutic antibodies against a huge repertoire of different targets, our research could be of great interest for future drug development. We are able to discriminate between the different paratope-binding states in the conformational ensembles obtained by enhanced sampling molecular dynamics simulations, and to calculate their transition timescales and state probabilities. Furthermore, we describe the key residues responsible for discriminating between the different binding capacities and identify a tryptophan in a central position of the CDR L3 loop as the residue of greatest interest. The overall dynamics of the paratope appear to be mainly influenced by the CDR L3 and CDR L1 loops.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.3107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perspectives Toward an Integrative Structural Biology Pipeline With Atomic Force Microscopy Topographic Images 利用原子力显微镜地形图建立综合结构生物学管道的前景。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-27 DOI: 10.1002/jmr.3102
Jean-Luc Pellequer

After the recent double revolutions in structural biology, which include the use of direct detectors for cryo-electron microscopy resulting in a significant improvement in the expected resolution of large macromolecule structures, and the advent of AlphaFold which allows for near-accurate prediction of any protein structures, the field of structural biology is now pursuing more ambitious targets, including several MDa assemblies. But complex target systems cannot be tackled using a single biophysical technique. The field of integrative structural biology has emerged as a global solution. The aim is to integrate data from multiple complementary techniques to produce a final three-dimensional model that cannot be obtained from any single technique. The absence of atomic force microscopy data from integrative structural biology platforms is not necessarily due to its nm resolution, as opposed to Å resolution for x-ray crystallography, nuclear magnetic resonance, or electron microscopy. Rather a significant issue was that the AFM topographic data lacked interpretability. Fortunately, with the introduction of the AFM-Assembly pipeline and other similar tools, it is now possible to integrate AFM topographic data into integrative modeling platforms. The advantages of single molecule techniques, such as AFM, include the ability to confirm experimentally any assembled molecular models or to produce alternative conformations that mimic the inherent flexibility of large proteins or complexes. The review begins with a brief overview of the historical developments of AFM data in structural biology, followed by an examination of the strengths and limitations of AFM imaging, which have hindered its integration into modern modeling platforms. This review discusses the correction and improvement of AFM topographic images, as well as the principles behind the AFM-Assembly pipeline. It also presents and discusses a series of challenges that need to be addressed in order to improve the incorporation of AFM data into integrative modeling platform.

最近,结构生物学领域发生了两场革命,一是在低温电子显微镜中使用了直接探测器,大大提高了大型大分子结构的预期分辨率,二是 AlphaFold 的出现使任何蛋白质结构的预测接近精确。但是,单一的生物物理技术无法解决复杂的目标系统。作为一种全球性解决方案,整合结构生物学领域应运而生。其目的是整合来自多种互补技术的数据,生成最终的三维模型,而这种模型是任何单一技术都无法获得的。综合结构生物学平台缺乏原子力显微镜数据并不一定是由于其纳米分辨率,而不是 X 射线晶体学、核磁共振或电子显微镜的埃分辨率。相反,一个重要的问题是原子力显微镜拓扑数据缺乏可解释性。幸运的是,随着 AFM-Assembly 管道和其他类似工具的推出,现在可以将 AFM 拓扑数据集成到集成建模平台中。单分子技术(如原子力显微镜)的优势包括能够通过实验确认任何组装好的分子模型,或产生模拟大型蛋白质或复合物固有灵活性的替代构象。本综述首先简要概述了原子力显微镜数据在结构生物学中的历史发展,然后探讨了原子力显微镜成像的优势和局限性,这些优势和局限性阻碍了原子力显微镜成像与现代建模平台的整合。本综述讨论了原子力显微镜地形图像的校正和改进,以及原子力显微镜-组装管道背后的原理。它还提出并讨论了一系列需要应对的挑战,以便更好地将原子力显微镜数据纳入集成建模平台。
{"title":"Perspectives Toward an Integrative Structural Biology Pipeline With Atomic Force Microscopy Topographic Images","authors":"Jean-Luc Pellequer","doi":"10.1002/jmr.3102","DOIUrl":"10.1002/jmr.3102","url":null,"abstract":"<p>After the recent double revolutions in structural biology, which include the use of direct detectors for cryo-electron microscopy resulting in a significant improvement in the expected resolution of large macromolecule structures, and the advent of AlphaFold which allows for near-accurate prediction of any protein structures, the field of structural biology is now pursuing more ambitious targets, including several MDa assemblies. But complex target systems cannot be tackled using a single biophysical technique. The field of integrative structural biology has emerged as a global solution. The aim is to integrate data from multiple complementary techniques to produce a final three-dimensional model that cannot be obtained from any single technique. The absence of atomic force microscopy data from integrative structural biology platforms is not necessarily due to its nm resolution, as opposed to Å resolution for x-ray crystallography, nuclear magnetic resonance, or electron microscopy. Rather a significant issue was that the AFM topographic data lacked interpretability. Fortunately, with the introduction of the AFM-Assembly pipeline and other similar tools, it is now possible to integrate AFM topographic data into integrative modeling platforms. The advantages of single molecule techniques, such as AFM, include the ability to confirm experimentally any assembled molecular models or to produce alternative conformations that mimic the inherent flexibility of large proteins or complexes. The review begins with a brief overview of the historical developments of AFM data in structural biology, followed by an examination of the strengths and limitations of AFM imaging, which have hindered its integration into modern modeling platforms. This review discusses the correction and improvement of AFM topographic images, as well as the principles behind the AFM-Assembly pipeline. It also presents and discusses a series of challenges that need to be addressed in order to improve the incorporation of AFM data into integrative modeling platform.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.3102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microsecond Molecular Dynamics Simulation to Gain Insight Into the Binding of MRTX1133 and Trametinib With KRASG12D Mutant Protein for Drug Repurposing 通过微秒分子动力学模拟深入了解 MRTX1133 和曲美替尼与 KRASG12D 突变蛋白的结合情况,以实现药物的再利用。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-25 DOI: 10.1002/jmr.3103
Iruthayaraj Ancy, Sakayanathan Penislusshiyan, Fuad Ameen, Loganathan Chitra

The Kirsten Rat Sarcoma (KRAS) G12D mutant protein is a primary driver of pancreatic ductal adenocarcinoma, necessitating the identification of targeted drug molecules. Repurposing of drugs quickly finds new uses, speeding treatment development. This study employs microsecond molecular dynamics simulations to unveil the binding mechanisms of the FDA-approved MEK inhibitor trametinib with KRASG12D, providing insights for potential drug repurposing. The binding of trametinib was compared with clinical trial drug MRTX1133, which demonstrates exceptional activity against KRASG12D, for better understanding of interaction mechanism of trametinib with KRASG12D. The resulting stable MRTX1133-KRASG12D complex reduces root mean square deviation (RMSD) values, in Switch I and II domains, highlighting its potential for inhibiting KRASG12D. MRTX1133's robust interaction with Tyr64 and disruption of Tyr96-Tyr71-Arg68 network showcase its ability to mitigate the effects of the G12D mutation. In contrast, trametinib employs a distinctive binding mechanism involving P-loop, Switch I and II residues. Extended simulations to 1 μs reveal sustained network interactions with Tyr32, Thr58, and GDP, suggesting a role of trametinib in maintaining KRASG12D in an inactive state and impede the further cell signaling. The decomposition binding free energy values illustrate amino acids' contributions to binding energy, elucidating ligand–protein interactions and molecular stability. The machine learning approach reveals that van der Waals interactions among the residues play vital role in complex stability and the potential amino acids involved in drug–receptor interactions of each complex. These details provide a molecular-level understanding of drug binding mechanisms, offering essential knowledge for further drug repurposing and potential drug discovery.

克氏鼠肉瘤(KRAS)G12D 突变蛋白是胰腺导管腺癌的主要致病因素,因此有必要确定靶向药物分子。药物的再利用可以迅速找到新用途,加快治疗方法的开发。本研究利用微秒分子动力学模拟揭示了美国食品及药物管理局批准的MEK抑制剂曲美替尼与KRASG12D的结合机制,为潜在的药物再利用提供了见解。为了更好地理解曲美替尼与KRASG12D的相互作用机制,我们将曲美替尼与临床试验药物MRTX1133的结合进行了比较。由此产生的稳定的 MRTX1133-KRASG12D 复合物降低了开关 I 和开关 II 结构域的均方根偏差 (RMSD) 值,突显了其抑制 KRASG12D 的潜力。MRTX1133与Tyr64的强相互作用以及对Tyr96-Tyr71-Arg68网络的破坏显示了其减轻G12D突变影响的能力。相比之下,曲美替尼采用了一种独特的结合机制,涉及 P 环、Switch I 和 II 残基。扩展到 1 μs 的模拟显示了与 Tyr32、Thr58 和 GDP 的持续网络相互作用,这表明曲美替尼在维持 KRASG12D 处于非活性状态和阻碍进一步的细胞信号传导方面发挥了作用。分解结合自由能值说明了氨基酸对结合能的贡献,阐明了配体与蛋白质的相互作用和分子稳定性。机器学习方法揭示了残基之间的范德华相互作用在复合物稳定性中的重要作用,以及每个复合物中参与药物-受体相互作用的潜在氨基酸。这些细节提供了对药物结合机制的分子级理解,为进一步的药物再利用和潜在药物发现提供了重要知识。
{"title":"Microsecond Molecular Dynamics Simulation to Gain Insight Into the Binding of MRTX1133 and Trametinib With KRASG12D Mutant Protein for Drug Repurposing","authors":"Iruthayaraj Ancy,&nbsp;Sakayanathan Penislusshiyan,&nbsp;Fuad Ameen,&nbsp;Loganathan Chitra","doi":"10.1002/jmr.3103","DOIUrl":"10.1002/jmr.3103","url":null,"abstract":"<div>\u0000 \u0000 <p>The Kirsten Rat Sarcoma (KRAS) G12D mutant protein is a primary driver of pancreatic ductal adenocarcinoma, necessitating the identification of targeted drug molecules. Repurposing of drugs quickly finds new uses, speeding treatment development. This study employs microsecond molecular dynamics simulations to unveil the binding mechanisms of the FDA-approved MEK inhibitor trametinib with KRAS<sup>G12D</sup>, providing insights for potential drug repurposing. The binding of trametinib was compared with clinical trial drug MRTX1133, which demonstrates exceptional activity against KRAS<sup>G12D</sup>, for better understanding of interaction mechanism of trametinib with KRAS<sup>G12D</sup>. The resulting stable MRTX1133-KRAS<sup>G12D</sup> complex reduces root mean square deviation (RMSD) values, in Switch I and II domains, highlighting its potential for inhibiting KRAS<sup>G12D</sup>. MRTX1133's robust interaction with Tyr64 and disruption of Tyr96-Tyr71-Arg68 network showcase its ability to mitigate the effects of the G12D mutation. In contrast, trametinib employs a distinctive binding mechanism involving P-loop, Switch I and II residues. Extended simulations to 1 μs reveal sustained network interactions with Tyr32, Thr58, and GDP, suggesting a role of trametinib in maintaining KRAS<sup>G12D</sup> in an inactive state and impede the further cell signaling. The decomposition binding free energy values illustrate amino acids' contributions to binding energy, elucidating ligand–protein interactions and molecular stability. The machine learning approach reveals that van der Waals interactions among the residues play vital role in complex stability and the potential amino acids involved in drug–receptor interactions of each complex. These details provide a molecular-level understanding of drug binding mechanisms, offering essential knowledge for further drug repurposing and potential drug discovery.</p>\u0000 </div>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Analysis of Interactions Between Drugs and Human Serum Albumin 药物与人血清白蛋白相互作用的计算分析
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-21 DOI: 10.1002/jmr.3105
Muslum Yildiz

Drug molecules exist as complexed with serum proteins such as human serum albumin (HSA) and/or unbound free form in the blood circulation. Drugs can be effective only when they are free. Thus, it is important to understand aspects that are important for interaction between drugs and interacting proteins. In this study, interactions among 2990 FDA approved drugs and HSA were computational analyzed to unravel principles that are critical for drug-HSA interactions. Docking results showed that drugs have higher affinity toward cavity-1 (C1) than cavity-2 (C2). A total of 1131 drug molecules have docking score greater than 60 while 768 molecules have docking score greater than 60 when they are docked in C2. In addition, three solvent channels have potential to direct solvent to C1 cavity while C2 does not have any effective channel. The post MD analyses demonstrated that drugs are making polar interactions with basic amino acids in the binding cavities. Verbscoside and ceftazidime both have stable low RMSD values throughout MD simulation with 2 Å on average in C1 cavity. The ligand RMSD shows less stability for verbscoside, which is around 4 Å when it is in complex with HSA in C1. The individual contribution of the residues K192, K196, R215, and R254 to ceftazidime are −1.92 ± 0.18, −3.09 ± 0.09, −2.17 ± 0.17, and − 2.32 ± 0.098, respectively. These residues contribute the binding energy of the verbscoside by −6.06 ± 0.08, −2.10 ± 0.06, and − 1.57 ± 0.03 kcal/mol individually in C1 cavity. C2 is making polar interactions with drug via R469, K472, and K488 residues and their contribution to the two drugs are −3.13 ± 0.21 kcal/mol for R469, −1.94 ± 0.18 kcal/mol for K472, and −1.96 ± 0.11 kcal/mol for K488 to total binding energy of ceftazidime. The binding energy of verbscoside is 57.17 ± 7.00 kcal/mol and Arg-407 has the highest contribution this bind energy individually with −4.29 ± 0.12 kcal/mol. Drugs with hydrogen bond donor/acceptor chemical adducts such as verbscoside involve higher hydrogen bond formation in C1 pocket. Ceftazidime makes interaction with HSA toward hydrophobic residues, L384, L404, L487, and L488 in the C2 cavity.

药物分子以与血清蛋白(如人血清白蛋白(HSA))络合和/或未结合的游离形式存在于血液循环中。药物只有在游离状态下才能发挥作用。因此,了解药物与相互作用蛋白之间相互作用的重要方面非常重要。本研究对 2990 种经 FDA 批准的药物与 HSA 之间的相互作用进行了计算分析,以揭示药物与 HSA 相互作用的关键原理。对接结果显示,药物对空腔-1(C1)的亲和力高于空腔-2(C2)。共有 1131 个药物分子的对接得分大于 60 分,而 768 个药物分子对接 C2 时的对接得分大于 60 分。此外,有三个溶剂通道有可能将溶剂导向 C1 腔,而 C2 没有任何有效通道。MD 后分析表明,药物在结合腔中与碱性氨基酸发生极性相互作用。在整个 MD 模拟过程中,马鞭草苷和头孢他啶都具有稳定的低 RMSD 值,在 C1 腔中平均为 2 Å。动词苷的配体 RMSD 值稳定性较差,在 C1 中与 HSA 复合物时约为 4 Å。残基 K192、K196、R215 和 R254 对头孢他啶的贡献分别为 -1.92 ± 0.18、-3.09 ± 0.09、-2.17 ± 0.17 和 - 2.32 ± 0.098。这些残基在 C1 腔中对动词苷结合能的贡献分别为 -6.06 ± 0.08、-2.10 ± 0.06 和 - 1.57 ± 0.03 kcal/mol。C2 通过 R469、K472 和 K488 残基与药物发生极性相互作用,它们对头孢他啶总结合能的贡献分别为 R469 -3.13 ± 0.21 kcal/mol、K472 -1.94 ± 0.18 kcal/mol 和 K488 -1.96 ± 0.11 kcal/mol。动词苷的结合能为 57.17 ± 7.00 kcal/mol,其中 Arg-407 的单独结合能贡献最大,为 -4.29 ± 0.12 kcal/mol。具有氢键供体/受体化学加合物的药物(如动词苷)在 C1 袋中形成的氢键较多。头孢他啶与 HSA 相互作用的方向是 C2 腔中的疏水残基 L384、L404、L487 和 L488。
{"title":"Computational Analysis of Interactions Between Drugs and Human Serum Albumin","authors":"Muslum Yildiz","doi":"10.1002/jmr.3105","DOIUrl":"10.1002/jmr.3105","url":null,"abstract":"<p>Drug molecules exist as complexed with serum proteins such as human serum albumin (HSA) and/or unbound free form in the blood circulation. Drugs can be effective only when they are free. Thus, it is important to understand aspects that are important for interaction between drugs and interacting proteins. In this study, interactions among 2990 FDA approved drugs and HSA were computational analyzed to unravel principles that are critical for drug-HSA interactions. Docking results showed that drugs have higher affinity toward cavity-1 (C1) than cavity-2 (C2). A total of 1131 drug molecules have docking score greater than 60 while 768 molecules have docking score greater than 60 when they are docked in C2. In addition, three solvent channels have potential to direct solvent to C1 cavity while C2 does not have any effective channel. The post MD analyses demonstrated that drugs are making polar interactions with basic amino acids in the binding cavities. Verbscoside and ceftazidime both have stable low RMSD values throughout MD simulation with 2 Å on average in C1 cavity. The ligand RMSD shows less stability for verbscoside, which is around 4 Å when it is in complex with HSA in C1. The individual contribution of the residues K192, K196, R215, and R254 to ceftazidime are −1.92 ± 0.18, −3.09 ± 0.09, −2.17 ± 0.17, and − 2.32 ± 0.098, respectively. These residues contribute the binding energy of the verbscoside by −6.06 ± 0.08, −2.10 ± 0.06, and − 1.57 ± 0.03 kcal/mol individually in C1 cavity. C2 is making polar interactions with drug via R469, K472, and K488 residues and their contribution to the two drugs are −3.13 ± 0.21 kcal/mol for R469, −1.94 ± 0.18 kcal/mol for K472, and −1.96 ± 0.11 kcal/mol for K488 to total binding energy of ceftazidime. The binding energy of verbscoside is 57.17 ± 7.00 kcal/mol and Arg-407 has the highest contribution this bind energy individually with −4.29 ± 0.12 kcal/mol. Drugs with hydrogen bond donor/acceptor chemical adducts such as verbscoside involve higher hydrogen bond formation in C1 pocket. Ceftazidime makes interaction with HSA toward hydrophobic residues, L384, L404, L487, and L488 in the C2 cavity.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmr.3105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Inhibition of Diindolylmethane Derivatives on SARS-CoV-2 Main Protease 研究二吲哚甲烷衍生物对 SARS-CoV-2 主要蛋白酶的抑制作用
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 DOI: 10.1002/jmr.3101
Wenjin Li, Xiaoyu Chang, Hang Zhou, Wenquan Yu, Ruiyong Wang, Junbiao Chang

The SARS-CoV-2 main protease (Mpro) is an essential enzyme that promotes viral transcription and replication. Mpro conserved nature in different variants and its nonoverlapping nature with human proteases make it an attractive target for therapeutic intervention against SARS-CoV-2. In this work, the interaction mechanism between Mpro and diindolylmethane derivatives was investigated by molecular docking, enzymatic inhibition assay, UV–vis, fluorescence spectroscopy, and circular dichroism spectroscopy. Results of IC50 values show that 1p (9.87 μM) was the strongest inhibitor for Mpro in this work, which significantly inhibited the activity of Mpro. The binding constant (4.07 × 105 Lmol−1), the quenching constant (5.41 × 105 Lmol−1), and thermodynamic parameters indicated that the quenching mode of 1p was static quenching, and the main driving forces between 1p and Mpro are hydrogen bond and van der Waals force. The influence of molecular structure on the binding is investigated. Chlorine atoms and methoxy groups are favorable for the diindolylmethane derivative inhibitors of Mpro. This work confirms the changes in the microenvironment of Mpro by 1p, and provides clues for the design of potential inhibitors.

SARS-CoV-2 主要蛋白酶(Mpro)是一种促进病毒转录和复制的重要酶。Mpro 在不同变体中的保守性及其与人类蛋白酶的非重叠性使其成为对 SARS-CoV-2 进行治疗干预的一个有吸引力的靶点。本研究通过分子对接、酶抑制试验、紫外-可见光光谱、荧光光谱和圆二色光谱等方法研究了 Mpro 与二吲哚甲烷衍生物之间的相互作用机制。IC50 值结果表明,1p(9.87 μM)是本研究中对 Mpro 的最强抑制剂,能显著抑制 Mpro 的活性。结合常数(4.07×105 Lmol-1)、淬灭常数(5.41×105 Lmol-1)和热力学参数表明,1p的淬灭方式为静态淬灭,1p与Mpro之间的主要驱动力为氢键和范德华力。研究了分子结构对结合的影响。氯原子和甲氧基有利于二吲哚甲烷衍生物抑制 Mpro。这项工作证实了 1p 对 Mpro 微环境的改变,并为设计潜在的抑制剂提供了线索。
{"title":"Investigating the Inhibition of Diindolylmethane Derivatives on SARS-CoV-2 Main Protease","authors":"Wenjin Li,&nbsp;Xiaoyu Chang,&nbsp;Hang Zhou,&nbsp;Wenquan Yu,&nbsp;Ruiyong Wang,&nbsp;Junbiao Chang","doi":"10.1002/jmr.3101","DOIUrl":"10.1002/jmr.3101","url":null,"abstract":"<div>\u0000 \u0000 <p>The SARS-CoV-2 main protease (Mpro) is an essential enzyme that promotes viral transcription and replication. Mpro conserved nature in different variants and its nonoverlapping nature with human proteases make it an attractive target for therapeutic intervention against SARS-CoV-2. In this work, the interaction mechanism between Mpro and diindolylmethane derivatives was investigated by molecular docking, enzymatic inhibition assay, UV–vis, fluorescence spectroscopy, and circular dichroism spectroscopy. Results of IC<sub>50</sub> values show that <b>1p</b> (9.87 μM) was the strongest inhibitor for Mpro in this work, which significantly inhibited the activity of Mpro. The binding constant (4.07 × 10<sup>5</sup> Lmol<sup>−1</sup>), the quenching constant (5.41 × 10<sup>5</sup> Lmol<sup>−1</sup>), and thermodynamic parameters indicated that the quenching mode of <b>1p</b> was static quenching, and the main driving forces between <b>1p</b> and Mpro are hydrogen bond and van der Waals force. The influence of molecular structure on the binding is investigated. Chlorine atoms and methoxy groups are favorable for the diindolylmethane derivative inhibitors of Mpro. This work confirms the changes in the microenvironment of Mpro by <b>1p</b>, and provides clues for the design of potential inhibitors.</p>\u0000 </div>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Molecular Recognition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1