A note on multiply robust predictive mean matching imputation with complex survey data.

IF 1.2 4区 数学 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS Survey Methodology Pub Date : 2021-06-01 Epub Date: 2021-06-24
Sixia Chen, David Haziza, Alexander Stubblefield
{"title":"A note on multiply robust predictive mean matching imputation with complex survey data.","authors":"Sixia Chen, David Haziza, Alexander Stubblefield","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Predictive mean matching is a commonly used imputation procedure for addressing the problem of item nonrespone in surveys. The customary approach relies upon the specification of a single outcome regression model. In this note, we propose a novel predictive mean matching procedure that allows the user to specify multiple outcome regression models. The resulting estimator is multiply robust in the sense that it remains consistent if one of the specified outcome regression models is correctly specified. The results from a simulation study suggest that the proposed method performs well in terms of bias and efficiency.</p>","PeriodicalId":51191,"journal":{"name":"Survey Methodology","volume":"47 1","pages":"215-222"},"PeriodicalIF":1.2000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438827/pdf/nihms-1704347.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey Methodology","FirstCategoryId":"100","ListUrlMain":"","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Predictive mean matching is a commonly used imputation procedure for addressing the problem of item nonrespone in surveys. The customary approach relies upon the specification of a single outcome regression model. In this note, we propose a novel predictive mean matching procedure that allows the user to specify multiple outcome regression models. The resulting estimator is multiply robust in the sense that it remains consistent if one of the specified outcome regression models is correctly specified. The results from a simulation study suggest that the proposed method performs well in terms of bias and efficiency.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于复杂调查数据的多稳健预测均值匹配估算的说明。
预测均值匹配是一种常用的估算程序,用于解决调查中的项目无响应问题。传统方法依赖于指定单一结果回归模型。在本说明中,我们提出了一种新颖的预测均值匹配程序,允许用户指定多个结果回归模型。由此产生的估计器具有多重稳健性,即只要指定的结果回归模型之一正确,估计器就能保持一致。模拟研究的结果表明,所提出的方法在偏差和效率方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Survey Methodology
Survey Methodology 数学-统计学与概率论
CiteScore
0.80
自引率
22.20%
发文量
0
审稿时长
>12 weeks
期刊介绍: The journal publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves.
期刊最新文献
The anchoring method: Estimation of interviewer effects in the absence of interpenetrated sample assignment. A note on multiply robust predictive mean matching imputation with complex survey data. Optimum allocation for a dual-frame telephone survey. Combining information from multiple complex surveys. A nonparametric method to generate synthetic populations to adjust for complex sampling design features.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1