Douglas Blackiston, Sam Kriegman, Josh Bongard, Michael Levin
{"title":"Biological Robots: Perspectives on an Emerging Interdisciplinary Field.","authors":"Douglas Blackiston, Sam Kriegman, Josh Bongard, Michael Levin","doi":"10.1089/soro.2022.0142","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in science and engineering often reveal the limitations of classical approaches initially used to understand, predict, and control phenomena. With progress, conceptual categories must often be re-evaluated to better track recently discovered invariants across disciplines. It is essential to refine frameworks and resolve conflicting boundaries between disciplines such that they better facilitate, not restrict, experimental approaches and capabilities. In this essay, we address specific questions and critiques which have arisen in response to our research program, which lies at the intersection of developmental biology, computer science, and robotics. In the context of biological machines and robots, we explore changes across concepts and previously distinct fields that are driven by recent advances in materials, information, and life sciences. Herein, each author provides their own perspective on the subject, framed by their own disciplinary training. We argue that as with computation, certain aspects of developmental biology and robotics are not tied to specific materials; rather, the consilience of these fields can help to shed light on issues of multiscale control, self-assembly, and relationships between form and function. We hope new fields can emerge as boundaries arising from technological limitations are overcome, furthering practical applications from regenerative medicine to useful synthetic living machines.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 4","pages":"674-686"},"PeriodicalIF":6.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442684/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0142","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 6
Abstract
Advances in science and engineering often reveal the limitations of classical approaches initially used to understand, predict, and control phenomena. With progress, conceptual categories must often be re-evaluated to better track recently discovered invariants across disciplines. It is essential to refine frameworks and resolve conflicting boundaries between disciplines such that they better facilitate, not restrict, experimental approaches and capabilities. In this essay, we address specific questions and critiques which have arisen in response to our research program, which lies at the intersection of developmental biology, computer science, and robotics. In the context of biological machines and robots, we explore changes across concepts and previously distinct fields that are driven by recent advances in materials, information, and life sciences. Herein, each author provides their own perspective on the subject, framed by their own disciplinary training. We argue that as with computation, certain aspects of developmental biology and robotics are not tied to specific materials; rather, the consilience of these fields can help to shed light on issues of multiscale control, self-assembly, and relationships between form and function. We hope new fields can emerge as boundaries arising from technological limitations are overcome, furthering practical applications from regenerative medicine to useful synthetic living machines.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.