Modular Morphing Lattices for Large-Scale Underwater Continuum Robotic Structures.

IF 6.4 2区 计算机科学 Q1 ROBOTICS Soft Robotics Pub Date : 2023-08-01 DOI:10.1089/soro.2022.0117
Alfonso Parra Rubio, Dixia Fan, Benjamin Jenett, José Del Águila Ferrandis, Filippos Tourlomousis, Amira Abdel-Rahman, David Preiss, Michael Triantafyllou, Neil Gershenfeld
{"title":"Modular Morphing Lattices for Large-Scale Underwater Continuum Robotic Structures.","authors":"Alfonso Parra Rubio,&nbsp;Dixia Fan,&nbsp;Benjamin Jenett,&nbsp;José Del Águila Ferrandis,&nbsp;Filippos Tourlomousis,&nbsp;Amira Abdel-Rahman,&nbsp;David Preiss,&nbsp;Michael Triantafyllou,&nbsp;Neil Gershenfeld","doi":"10.1089/soro.2022.0117","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we present a method to construct meter-scale deformable structures for underwater robotic applications by discretely assembling mechanical metamaterials. We address the challenge of scaling up nature-like deformable structures while remaining structurally efficient by combining rigid and compliant facets to form custom unit cells that assemble into lattices. The unit cells generate controlled local anisotropies that architect the global deformation of the robotic structure. The resulting flexibility allows better unsteady flow control that enables highly efficient propulsion and optimized force profile manipulations. We demonstrate the utility of this approach in two models. The first is a morphing beam snake-like robot that can generate thrust at specific anguilliform swimming parameters. The second is a morphing surface hydrofoil that, when compared with a rigid wing at the same angles of attack (AoAs), can increase the lift coefficient up to 0.6. In addition, in lower AoAs, the <math><mi>L</mi><mo>∕</mo><mi>D</mi></math> ratio improves by 5 times, whereas in higher angles it improves by 1.25 times. The resulting hydrodynamic performance demonstrates the potential to achieve accessible, scalable, and simple to design and assemble morphing structures for more efficient and effective future ocean exploration and exploitation.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 4","pages":"724-736"},"PeriodicalIF":6.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442689/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0117","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, we present a method to construct meter-scale deformable structures for underwater robotic applications by discretely assembling mechanical metamaterials. We address the challenge of scaling up nature-like deformable structures while remaining structurally efficient by combining rigid and compliant facets to form custom unit cells that assemble into lattices. The unit cells generate controlled local anisotropies that architect the global deformation of the robotic structure. The resulting flexibility allows better unsteady flow control that enables highly efficient propulsion and optimized force profile manipulations. We demonstrate the utility of this approach in two models. The first is a morphing beam snake-like robot that can generate thrust at specific anguilliform swimming parameters. The second is a morphing surface hydrofoil that, when compared with a rigid wing at the same angles of attack (AoAs), can increase the lift coefficient up to 0.6. In addition, in lower AoAs, the LD ratio improves by 5 times, whereas in higher angles it improves by 1.25 times. The resulting hydrodynamic performance demonstrates the potential to achieve accessible, scalable, and simple to design and assemble morphing structures for more efficient and effective future ocean exploration and exploitation.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型水下连续体机器人结构的模块化变形格。
在这项研究中,我们提出了一种通过离散组装机械超材料来构建用于水下机器人应用的米尺度可变形结构的方法。我们解决了在保持结构效率的同时扩大自然变形结构的挑战,通过结合刚性和柔性面来形成组装成晶格的定制单元格。单元胞产生可控的局部各向异性,从而构建机器人结构的全局变形。由此产生的灵活性可以实现更好的非定常流动控制,从而实现高效的推进和优化的力剖面操纵。我们在两个模型中演示了这种方法的实用性。第一个是变形光束蛇形机器人,它可以在特定的鳗形游泳参数下产生推力。第二种是变形水面水翼,与相同迎角(AoAs)的刚性机翼相比,可以将升力系数提高到0.6。此外,在低AoAs下,L / D比提高了5倍,而在高角度下,L / D比提高了1.25倍。由此产生的水动力性能证明了实现可访问、可扩展、易于设计和组装的变形结构的潜力,以实现更高效和有效的未来海洋勘探和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
期刊最新文献
A Biomimetic Adhesive Disc for Robotic Adhesion Sliding Inspired by the Net-Winged Midge Larva. YoMo: Yoshimura Continuum Manipulator for MR Environment. Soft-Rigid Hybrid Revolute and Prismatic Joints Using Multilayered Bellow-Type Soft Pneumatic Actuators: Design, Characterization, and Its Application as Soft-Rigid Hybrid Gripper. Soft Electromagnetic Sliding Actuators for Highly Compliant Planar Motions Using Microfluidic Conductive Coil Array. Thermo-Pneumatic Artificial Muscle: Air-Based Thermo-Pneumatic Artificial Muscles for Pumpless Pneumatic Actuation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1