Joint Latent Space Model for Social Networks with Multivariate Attributes.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Psychometrika Pub Date : 2023-12-01 Epub Date: 2023-08-24 DOI:10.1007/s11336-023-09926-5
Selena Wang, Subhadeep Paul, Paul De Boeck
{"title":"Joint Latent Space Model for Social Networks with Multivariate Attributes.","authors":"Selena Wang, Subhadeep Paul, Paul De Boeck","doi":"10.1007/s11336-023-09926-5","DOIUrl":null,"url":null,"abstract":"<p><p>In social, behavioral and economic sciences, researchers are interested in modeling a social network among a group of individuals, along with their attributes. The attributes can be responses to survey questionnaires and are often high dimensional. We propose a joint latent space model (JLSM) that summarizes information from the social network and the multivariate attributes in a person-attribute joint latent space. We develop a variational Bayesian expectation-maximization estimation algorithm to estimate the attribute and person locations in the joint latent space. This methodology allows for effective integration, informative visualization and prediction of social networks and attributes. Using JLSM, we explore the French financial elites based on their social networks and their career, political views and social status. We observe a division in the social circles of the French elites in accordance with the differences in their attributes. We analyze user networks and behaviors in multimodal social media systems like YouTube. A R package \"jlsm\" is developed to fit the models proposed in this paper and is publicly available from the CRAN repository https://cran.r-project.org/web/packages/jlsm/jlsm.pdf .</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1197-1227"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09926-5","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In social, behavioral and economic sciences, researchers are interested in modeling a social network among a group of individuals, along with their attributes. The attributes can be responses to survey questionnaires and are often high dimensional. We propose a joint latent space model (JLSM) that summarizes information from the social network and the multivariate attributes in a person-attribute joint latent space. We develop a variational Bayesian expectation-maximization estimation algorithm to estimate the attribute and person locations in the joint latent space. This methodology allows for effective integration, informative visualization and prediction of social networks and attributes. Using JLSM, we explore the French financial elites based on their social networks and their career, political views and social status. We observe a division in the social circles of the French elites in accordance with the differences in their attributes. We analyze user networks and behaviors in multimodal social media systems like YouTube. A R package "jlsm" is developed to fit the models proposed in this paper and is publicly available from the CRAN repository https://cran.r-project.org/web/packages/jlsm/jlsm.pdf .

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元属性社会网络的联合潜在空间模型。
在社会科学、行为科学和经济科学中,研究人员感兴趣的是在一群个体之间建立一个社会网络模型,以及他们的属性。属性可以是对调查问卷的响应,并且通常是高维的。我们提出了一个联合潜在空间模型(JLSM),该模型将来自社会网络和多元属性的信息汇总到一个人-属性联合潜在空间中。我们开发了一种变分贝叶斯期望最大化估计算法来估计联合潜在空间中的属性和人的位置。这种方法允许对社会网络和属性进行有效的集成、信息可视化和预测。使用JLSM,我们根据法国金融精英的社交网络、职业、政治观点和社会地位对他们进行了研究。我们观察到,法国精英阶层的社交圈根据其属性的不同而出现了分化。我们分析了像YouTube这样的多模式社交媒体系统中的用户网络和行为。开发了一个R包“jlsm”来适应本文中提出的模型,并且可以从CRAN存储库https://cran.r-project.org/web/packages/jlsm/jlsm.pdf公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
期刊最新文献
Correction to: Generalized Structured Component Analysis Accommodating Convex Components: A Knowledge-Based Multivariate Method with Interpretable Composite Indexes. Remarks from the Editor-in-Chief. Optimizing Large-Scale Educational Assessment with a "Divide-and-Conquer" Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models. Ordinal Outcome State-Space Models for Intensive Longitudinal Data. New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1