{"title":"Joint Latent Space Model for Social Networks with Multivariate Attributes.","authors":"Selena Wang, Subhadeep Paul, Paul De Boeck","doi":"10.1007/s11336-023-09926-5","DOIUrl":null,"url":null,"abstract":"<p><p>In social, behavioral and economic sciences, researchers are interested in modeling a social network among a group of individuals, along with their attributes. The attributes can be responses to survey questionnaires and are often high dimensional. We propose a joint latent space model (JLSM) that summarizes information from the social network and the multivariate attributes in a person-attribute joint latent space. We develop a variational Bayesian expectation-maximization estimation algorithm to estimate the attribute and person locations in the joint latent space. This methodology allows for effective integration, informative visualization and prediction of social networks and attributes. Using JLSM, we explore the French financial elites based on their social networks and their career, political views and social status. We observe a division in the social circles of the French elites in accordance with the differences in their attributes. We analyze user networks and behaviors in multimodal social media systems like YouTube. A R package \"jlsm\" is developed to fit the models proposed in this paper and is publicly available from the CRAN repository https://cran.r-project.org/web/packages/jlsm/jlsm.pdf .</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1197-1227"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09926-5","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In social, behavioral and economic sciences, researchers are interested in modeling a social network among a group of individuals, along with their attributes. The attributes can be responses to survey questionnaires and are often high dimensional. We propose a joint latent space model (JLSM) that summarizes information from the social network and the multivariate attributes in a person-attribute joint latent space. We develop a variational Bayesian expectation-maximization estimation algorithm to estimate the attribute and person locations in the joint latent space. This methodology allows for effective integration, informative visualization and prediction of social networks and attributes. Using JLSM, we explore the French financial elites based on their social networks and their career, political views and social status. We observe a division in the social circles of the French elites in accordance with the differences in their attributes. We analyze user networks and behaviors in multimodal social media systems like YouTube. A R package "jlsm" is developed to fit the models proposed in this paper and is publicly available from the CRAN repository https://cran.r-project.org/web/packages/jlsm/jlsm.pdf .
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.