首页 > 最新文献

Psychometrika最新文献

英文 中文
Identification and Scaling of Latent Variables in Ordinal Factor Analysis. 序因子分析中潜在变量的识别与标度。
IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-13 DOI: 10.1017/psy.2026.10084
Edgar C Merkle, Sonja D Winter, Ellen Fitzsimmons
{"title":"Identification and Scaling of Latent Variables in Ordinal Factor Analysis.","authors":"Edgar C Merkle, Sonja D Winter, Ellen Fitzsimmons","doi":"10.1017/psy.2026.10084","DOIUrl":"https://doi.org/10.1017/psy.2026.10084","url":null,"abstract":"","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-30"},"PeriodicalIF":3.1,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145960592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating Cognitive Maps: Statistical Analysis of 3D Path Data in Minecraft. 导航认知地图:《我的世界》3D路径数据的统计分析
IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-13 DOI: 10.1017/psy.2025.10069
Jizhi Zhang, Alessandra Shuster, Allison B Morehouse, Sara Mednick, Zhaoxia Yu, Weining Shen, Katharine C Simon

Understanding spatial navigation and memory formation is critical to exploring how humans learn and adapt in complex environments. To investigate these processes, we conducted an experiment using the Minecraft Memory and Navigation Task, collecting detailed three-dimensional (3D) path data in a virtual open-world setting. Statistically, we developed a novel methodology to convert complex high-dimensional 3D movement data into functional representations, enabling standardized comparisons and analyses across participants and environments. We applied techniques such as functional clustering and regression to identify navigation patterns and their relationships with cognitive map development and memory retention. Our analysis uncovered two significant insights: first, participants who adopted moderately exploratory behaviors during training demonstrated superior retention of object locations; second, inefficient navigation strategies were strongly linked to poorer spatial memory and navigation performance. These findings highlight the effectiveness of our methodology in advancing the study of navigation behaviors and cognitive processes in dynamic 3D environments.

理解空间导航和记忆形成对于探索人类如何在复杂环境中学习和适应至关重要。为了研究这些过程,我们使用《我的世界》记忆和导航任务进行了一项实验,在虚拟的开放世界环境中收集详细的三维(3D)路径数据。在统计学上,我们开发了一种新的方法,将复杂的高维3D运动数据转换为功能表示,从而实现了参与者和环境之间的标准化比较和分析。我们应用功能聚类和回归等技术来识别导航模式及其与认知地图发展和记忆保持的关系。我们的分析揭示了两个重要的见解:首先,在训练期间采取适度探索行为的参与者表现出更好的物体位置记忆;其次,低效的导航策略与较差的空间记忆和导航性能密切相关。这些发现突出了我们的方法在推进动态3D环境中导航行为和认知过程研究方面的有效性。
{"title":"Navigating Cognitive Maps: Statistical Analysis of 3D Path Data in Minecraft.","authors":"Jizhi Zhang, Alessandra Shuster, Allison B Morehouse, Sara Mednick, Zhaoxia Yu, Weining Shen, Katharine C Simon","doi":"10.1017/psy.2025.10069","DOIUrl":"https://doi.org/10.1017/psy.2025.10069","url":null,"abstract":"<p><p>Understanding spatial navigation and memory formation is critical to exploring how humans learn and adapt in complex environments. To investigate these processes, we conducted an experiment using the Minecraft Memory and Navigation Task, collecting detailed three-dimensional (3D) path data in a virtual open-world setting. Statistically, we developed a novel methodology to convert complex high-dimensional 3D movement data into functional representations, enabling standardized comparisons and analyses across participants and environments. We applied techniques such as functional clustering and regression to identify navigation patterns and their relationships with cognitive map development and memory retention. Our analysis uncovered two significant insights: first, participants who adopted moderately exploratory behaviors during training demonstrated superior retention of object locations; second, inefficient navigation strategies were strongly linked to poorer spatial memory and navigation performance. These findings highlight the effectiveness of our methodology in advancing the study of navigation behaviors and cognitive processes in dynamic 3D environments.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-25"},"PeriodicalIF":3.1,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145960504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Tutorial on Estimating the Precision of Individual Test Scores for Anyone Constructing and Using Psychological Tests. 为任何构建和使用心理测试的人估计个人测试分数精度的教程。
IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-09 DOI: 10.1017/psy.2026.10081
Julius M Pfadt, Dylan Molenaar, Petra Hurks, Klaas Sijtsma
{"title":"A Tutorial on Estimating the Precision of Individual Test Scores for Anyone Constructing and Using Psychological Tests.","authors":"Julius M Pfadt, Dylan Molenaar, Petra Hurks, Klaas Sijtsma","doi":"10.1017/psy.2026.10081","DOIUrl":"https://doi.org/10.1017/psy.2026.10081","url":null,"abstract":"","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-35"},"PeriodicalIF":3.1,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145936369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularized Joint Maximum Likelihood Estimation of Latent Space Item Response Models. 潜在空间项目反应模型的正则化联合最大似然估计。
IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-09 DOI: 10.1017/psy.2025.10068
Dylan Molenaar, Minjeong Jeon

In latent space item response models (LSIRMs), subjects and items are embedded in a low-dimensional Euclidean latent space. As such, interactions among persons and/or items can be revealed that are unmodeled in conventional item response theory models. Current estimation approach for LSIRMs is a fully Bayesian procedure with Markov Chain Monte Carlo, which is, while practical, computationally challenging, hampering applied researchers to use the models in a wide range of settings. Therefore, we propose an LSIRM based on two variants of regularized joint maximum likelihood (JML) estimation: penalized JML and constrained JML. Owing to the absence of integrals in the likelihood, the JML methods allow for various models to be fit in limited amount of time. This computational speed facilitates a practical extension of LSIRMs to ordinal data, and the possibility to select the dimensionality of the latent space using cross-validation. In this study, we derive the two JML approaches and address different issues that arise when using maximum likelihood to estimate the LSIRM. We present a simulation study demonstrating acceptable parameter recovery and adequate performance of the cross-validation procedure. In addition, we estimate different binary and ordinal LSIRMs on real datasets pertaining to deductive reasoning and personality. All methods are implemented in R package 'LSMjml' which is available from CRAN.

在潜在空间项目反应模型中,被试和项目被嵌入到一个低维欧几里得潜在空间中。因此,人们和/或项目之间的相互作用可以揭示在传统的项目反应理论模型中未建模的。目前lsims的估计方法是一个完全的贝叶斯过程和马尔可夫链蒙特卡罗,这虽然实用,但在计算上具有挑战性,阻碍了应用研究人员在广泛的设置中使用模型。因此,我们提出了一种基于正则化联合最大似然(JML)估计的两种变体的LSIRM:惩罚JML和约束JML。由于似然中没有积分,JML方法允许在有限的时间内拟合各种模型。这种计算速度有利于将lsims扩展到有序数据,并且可以使用交叉验证来选择潜在空间的维度。在本研究中,我们推导了两种JML方法,并解决了使用最大似然估计LSIRM时出现的不同问题。我们提出了一个模拟研究,证明了交叉验证程序的可接受参数恢复和足够的性能。此外,我们在演绎推理和人格相关的真实数据集上估计了不同的二进制和有序lsims。所有方法都在R包“LSMjml”中实现,该包可从CRAN获得。
{"title":"Regularized Joint Maximum Likelihood Estimation of Latent Space Item Response Models.","authors":"Dylan Molenaar, Minjeong Jeon","doi":"10.1017/psy.2025.10068","DOIUrl":"https://doi.org/10.1017/psy.2025.10068","url":null,"abstract":"<p><p>In latent space item response models (LSIRMs), subjects and items are embedded in a low-dimensional Euclidean latent space. As such, interactions among persons and/or items can be revealed that are unmodeled in conventional item response theory models. Current estimation approach for LSIRMs is a fully Bayesian procedure with Markov Chain Monte Carlo, which is, while practical, computationally challenging, hampering applied researchers to use the models in a wide range of settings. Therefore, we propose an LSIRM based on two variants of regularized joint maximum likelihood (JML) estimation: penalized JML and constrained JML. Owing to the absence of integrals in the likelihood, the JML methods allow for various models to be fit in limited amount of time. This computational speed facilitates a practical extension of LSIRMs to ordinal data, and the possibility to select the dimensionality of the latent space using cross-validation. In this study, we derive the two JML approaches and address different issues that arise when using maximum likelihood to estimate the LSIRM. We present a simulation study demonstrating acceptable parameter recovery and adequate performance of the cross-validation procedure. In addition, we estimate different binary and ordinal LSIRMs on real datasets pertaining to deductive reasoning and personality. All methods are implemented in R package 'LSMjml' which is available from CRAN.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-25"},"PeriodicalIF":3.1,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145936442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Latent Distribution of Item Response Theory Using Kernel Density Method. 用核密度法估计项目反应理论的潜在分布。
IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-08 DOI: 10.1017/psy.2026.10080
Seewoo Li, Guemin Lee
{"title":"Estimating Latent Distribution of Item Response Theory Using Kernel Density Method.","authors":"Seewoo Li, Guemin Lee","doi":"10.1017/psy.2026.10080","DOIUrl":"https://doi.org/10.1017/psy.2026.10080","url":null,"abstract":"","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-32"},"PeriodicalIF":3.1,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructive Q-Matrix Identifiability via Novel Tensor Unfolding. 基于新张量展开的构造q矩阵可辨识性。
IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-06 DOI: 10.1017/psy.2025.10078
Yuqi Gu

This work establishes a new identifiability theory for a cornerstone of various cognitive diagnostic models (CDMs) popular in psychometrics: the Q-matrix. The key idea is a novel tensor-unfolding proof strategy. Representing the joint distribution of J categorical responses as a J-way tensor, we strategically unfold the tensor into matrices in multiple ways and use their rank properties to identify the unknown Q-matrix. This approach departs fundamentally from all prior identifiability analyses in CDMs. Our proof is constructive, elucidating a population-level procedure to exactly recover the Q-matrix within a parameter space where each latent attribute is measured by at least two "pure" items that solely measure this attribute. The theory has several desirable features: it can constructively identify both the Q-matrix and the number of latent attributes; it applies to broad classes of linear and nonlinear CDMs with main or all saturated effects of attributes; and it accommodates polytomous responses, extending beyond classical binary response settings. The new identifiability result unifies and strengthens identifiability guarantees across diverse CDMs. It provides rigorous theoretical foundations and indicates a future pathway toward using tensor unfolding for practical Q-matrix estimation.

这项工作为心理测量学中流行的各种认知诊断模型(CDMs)的基石建立了一个新的可识别性理论:q矩阵。关键思想是一种新的张量展开证明策略。将J个分类响应的联合分布表示为J路张量,我们策略性地将张量以多种方式展开成矩阵,并利用它们的秩性质来识别未知的q矩阵。这种方法从根本上背离了cdm中所有先前的可识别性分析。我们的证明是建设性的,阐明了在参数空间内精确恢复q矩阵的总体水平过程,其中每个潜在属性由至少两个单独测量该属性的“纯”项测量。该理论有几个令人满意的特点:它可以建设性地识别q矩阵和潜在属性的数量;它适用于具有主要或全部属性饱和效应的广义线性和非线性cdm;它适应多元反应,超越了经典的二元反应设置。新的可识别性结果统一并加强了不同cdm之间的可识别性保证。它提供了严格的理论基础,并指出了使用张量展开进行实际q矩阵估计的未来途径。
{"title":"Constructive <i>Q</i>-Matrix Identifiability via Novel Tensor Unfolding.","authors":"Yuqi Gu","doi":"10.1017/psy.2025.10078","DOIUrl":"https://doi.org/10.1017/psy.2025.10078","url":null,"abstract":"<p><p>This work establishes a new identifiability theory for a cornerstone of various cognitive diagnostic models (CDMs) popular in psychometrics: the Q-matrix. The key idea is a novel tensor-unfolding proof strategy. Representing the joint distribution of <i>J</i> categorical responses as a <i>J</i>-way tensor, we strategically unfold the tensor into matrices in multiple ways and use their rank properties to identify the unknown Q-matrix. This approach departs fundamentally from all prior identifiability analyses in CDMs. Our proof is constructive, elucidating a population-level procedure to exactly recover the Q-matrix within a parameter space where each latent attribute is measured by at least two \"pure\" items that solely measure this attribute. The theory has several desirable features: it can constructively identify both the Q-matrix and the number of latent attributes; it applies to broad classes of linear and nonlinear CDMs with main or all saturated effects of attributes; and it accommodates polytomous responses, extending beyond classical binary response settings. The new identifiability result unifies and strengthens identifiability guarantees across diverse CDMs. It provides rigorous theoretical foundations and indicates a future pathway toward using tensor unfolding for practical Q-matrix estimation.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-20"},"PeriodicalIF":3.1,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145907280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A RECURSIVE STOCHASTIC ALGORITHM FOR REAL-TIME ONLINE PARAMETER ESTIMATION IN ITEM RESPONSE THEORY: ENHANCING COMPUTATIONAL EFFICIENCY FOR DYNAMIC EDUCATIONAL ASSESSMENT. 项目反应理论中实时在线参数估计的递归随机算法:提高动态教育评估的计算效率。
IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-23 DOI: 10.1017/psy.2025.10064
Sainan Xu, Jing Lu, Jiwei Zhang
{"title":"A RECURSIVE STOCHASTIC ALGORITHM FOR REAL-TIME ONLINE PARAMETER ESTIMATION IN ITEM RESPONSE THEORY: ENHANCING COMPUTATIONAL EFFICIENCY FOR DYNAMIC EDUCATIONAL ASSESSMENT.","authors":"Sainan Xu, Jing Lu, Jiwei Zhang","doi":"10.1017/psy.2025.10064","DOIUrl":"https://doi.org/10.1017/psy.2025.10064","url":null,"abstract":"","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-45"},"PeriodicalIF":3.1,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145812134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plausible and Proper Multiple-Choice Items for Diagnostic Classification. 诊断分类中似是而非的选择题。
IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-19 DOI: 10.1017/psy.2025.10074
Chia-Yi Chiu, Hans Friedrich Koehn, Yu Wang
{"title":"Plausible and Proper Multiple-Choice Items for Diagnostic Classification.","authors":"Chia-Yi Chiu, Hans Friedrich Koehn, Yu Wang","doi":"10.1017/psy.2025.10074","DOIUrl":"https://doi.org/10.1017/psy.2025.10074","url":null,"abstract":"","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-43"},"PeriodicalIF":3.1,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145783651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Psychometric Model Framework for Multiple Response Items. 多反应项目心理测量模型框架。
IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-19 DOI: 10.1017/psy.2025.10073
Wenjie Zhou, Lei Guo
{"title":"Psychometric Model Framework for Multiple Response Items.","authors":"Wenjie Zhou, Lei Guo","doi":"10.1017/psy.2025.10073","DOIUrl":"https://doi.org/10.1017/psy.2025.10073","url":null,"abstract":"","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-53"},"PeriodicalIF":3.1,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145783707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing Differential Item Functioning via Process Data. 通过过程数据减少差异项目功能。
IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-12-10 DOI: 10.1017/psy.2025.10072
Ling Chen, Susu Zhang, Jingchen Liu

Test fairness is a major concern in psychometric and educational research. A typical approach for ensuring test fairness is through differential item functioning (DIF) analysis. DIF arises when a test item functions differently across subgroups that are typically defined by the respondents' demographic characteristics. Most of the existing research focuses on the statistical detection of DIF, yet less attention has been given to reducing or eliminating DIF. Simultaneously, the use of computer-based assessments has become increasingly popular. The data obtained from respondents interacting with an item are recorded in computer log files and are referred to as process data. In this article, we propose a novel method within the framework of generalized linear models that leverages process data to reduce and understand DIF. Specifically, we construct a nuisance trait surrogate with the features extracted from process data. With the constructed nuisance trait, we introduce a new scoring rule that incorporates respondents' behaviors captured through process data on top of the target latent trait. We demonstrate the efficiency of our approach through extensive simulation experiments and an application to 13 Problem Solving in Technology-Rich Environments items from the 2012 Programme for the International Assessment of Adult Competencies assessment.

考试公平是心理测量学和教育研究的一个主要问题。确保测试公平性的一个典型方法是通过差异项目功能(DIF)分析。当测试项目在通常由应答者的人口统计特征定义的子组之间的功能不同时,就会出现DIF。现有的研究大多集中在DIF的统计检测上,而对减少或消除DIF的关注较少。与此同时,以计算机为基础的评估也越来越受欢迎。从与项目交互的应答者获得的数据被记录在计算机日志文件中,并被称为过程数据。在本文中,我们提出了一种在广义线性模型框架内利用过程数据来减少和理解DIF的新方法。具体来说,我们用从过程数据中提取的特征构建了一个讨厌的特征代理。通过构建的讨厌特质,我们引入了一种新的评分规则,该规则将通过过程数据捕获的被调查者的行为纳入目标潜在特质之上。我们通过广泛的模拟实验和应用于2012年国际成人能力评估评估计划中的13个技术丰富环境中的问题解决方案来证明我们方法的有效性。
{"title":"Reducing Differential Item Functioning via Process Data.","authors":"Ling Chen, Susu Zhang, Jingchen Liu","doi":"10.1017/psy.2025.10072","DOIUrl":"10.1017/psy.2025.10072","url":null,"abstract":"<p><p>Test fairness is a major concern in psychometric and educational research. A typical approach for ensuring test fairness is through differential item functioning (DIF) analysis. DIF arises when a test item functions differently across subgroups that are typically defined by the respondents' demographic characteristics. Most of the existing research focuses on the statistical detection of DIF, yet less attention has been given to reducing or eliminating DIF. Simultaneously, the use of computer-based assessments has become increasingly popular. The data obtained from respondents interacting with an item are recorded in computer log files and are referred to as process data. In this article, we propose a novel method within the framework of generalized linear models that leverages process data to reduce and understand DIF. Specifically, we construct a nuisance trait surrogate with the features extracted from process data. With the constructed nuisance trait, we introduce a new scoring rule that incorporates respondents' behaviors captured through process data on top of the target latent trait. We demonstrate the efficiency of our approach through extensive simulation experiments and an application to 13 Problem Solving in Technology-Rich Environments items from the 2012 Programme for the International Assessment of Adult Competencies assessment.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-36"},"PeriodicalIF":3.1,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145716679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Psychometrika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1