Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING 3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI:10.1089/3dp.2021.0209
Ratnesh Raj, Amit Rai Dixit
{"title":"Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.","authors":"Ratnesh Raj, Amit Rai Dixit","doi":"10.1089/3dp.2021.0209","DOIUrl":null,"url":null,"abstract":"<p><p>Direct Ink Writing (DIW) opens new possibilities in three-dimensional (3D) printing of carbon-based polymeric ink. This is due to its ability in design flexibility, structural complexity, and environmental sustainability. This area requires exhaustive study because of its wide application in different manufacturing sectors. The present article is related to the variant emerging 3D printing techniques and DIW of carbonaceous materials. Carbon-based materials, extensively used for various applications in 3D printing, possess impressive chemical stability, strength, and flexible nanostructure. Fine printable inks consist predominantly of uniform solutions of carbon materials, such as graphene, graphene oxide (GO), carbon fibers (CFs), carbon nanotubes (CNTs), and solvents. It also contains compatible polymers and suitable additives. This review article elaborately discusses the fundamental requirements of DIW in structuring carbon-doped polymeric inks viz. ink formulation, required ink rheology, extrusion parameters, print fidelity prediction, layer bonding examination, substrate selection, and curing method to achieve fine functional composites. A detailed description of its application in the fields of electronics, medical, and mechanical segments have also been focused in this study.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"828-854"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0209","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Direct Ink Writing (DIW) opens new possibilities in three-dimensional (3D) printing of carbon-based polymeric ink. This is due to its ability in design flexibility, structural complexity, and environmental sustainability. This area requires exhaustive study because of its wide application in different manufacturing sectors. The present article is related to the variant emerging 3D printing techniques and DIW of carbonaceous materials. Carbon-based materials, extensively used for various applications in 3D printing, possess impressive chemical stability, strength, and flexible nanostructure. Fine printable inks consist predominantly of uniform solutions of carbon materials, such as graphene, graphene oxide (GO), carbon fibers (CFs), carbon nanotubes (CNTs), and solvents. It also contains compatible polymers and suitable additives. This review article elaborately discusses the fundamental requirements of DIW in structuring carbon-doped polymeric inks viz. ink formulation, required ink rheology, extrusion parameters, print fidelity prediction, layer bonding examination, substrate selection, and curing method to achieve fine functional composites. A detailed description of its application in the fields of electronics, medical, and mechanical segments have also been focused in this study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺碳聚合物复合油墨的直接油墨书写:需求与应用综述
直接油墨写入(DIW)为碳基聚合物油墨的三维(3D)打印提供了新的可能性。这得益于它在设计灵活性、结构复杂性和环境可持续性方面的能力。由于其在不同制造领域的广泛应用,这一领域需要详尽的研究。本文涉及碳基材料的新型 3D 打印技术和 DIW。碳基材料广泛应用于三维打印的各种领域,具有令人印象深刻的化学稳定性、强度和灵活的纳米结构。精细可打印墨水主要由石墨烯、氧化石墨烯(GO)、碳纤维(CF)、碳纳米管(CNT)等碳材料的均匀溶液和溶剂组成。它还包含兼容的聚合物和合适的添加剂。这篇综述文章详细讨论了 DIW 在掺碳聚合物油墨结构中的基本要求,即油墨配方、所需的油墨流变性、挤出参数、印刷保真度预测、层粘合检查、基材选择和固化方法,以实现精细的功能复合材料。本研究还重点详细介绍了其在电子、医疗和机械领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
期刊最新文献
Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar. Characterizing the Effect of Filament Moisture on Tensile Properties and Morphology of Fused Deposition Modeled Polylactic Acid/Polybutylene Succinate Parts. On the Development of Smart Framework for Printability Maps in Additive Manufacturing of AISI 316L Stainless Steel. Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing. Simulation of Binder Jetting and Analysis of Magnesium Alloy Bonding Mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1