{"title":"Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.","authors":"Ratnesh Raj, Amit Rai Dixit","doi":"10.1089/3dp.2021.0209","DOIUrl":null,"url":null,"abstract":"<p><p>Direct Ink Writing (DIW) opens new possibilities in three-dimensional (3D) printing of carbon-based polymeric ink. This is due to its ability in design flexibility, structural complexity, and environmental sustainability. This area requires exhaustive study because of its wide application in different manufacturing sectors. The present article is related to the variant emerging 3D printing techniques and DIW of carbonaceous materials. Carbon-based materials, extensively used for various applications in 3D printing, possess impressive chemical stability, strength, and flexible nanostructure. Fine printable inks consist predominantly of uniform solutions of carbon materials, such as graphene, graphene oxide (GO), carbon fibers (CFs), carbon nanotubes (CNTs), and solvents. It also contains compatible polymers and suitable additives. This review article elaborately discusses the fundamental requirements of DIW in structuring carbon-doped polymeric inks viz. ink formulation, required ink rheology, extrusion parameters, print fidelity prediction, layer bonding examination, substrate selection, and curing method to achieve fine functional composites. A detailed description of its application in the fields of electronics, medical, and mechanical segments have also been focused in this study.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"828-854"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0209","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Direct Ink Writing (DIW) opens new possibilities in three-dimensional (3D) printing of carbon-based polymeric ink. This is due to its ability in design flexibility, structural complexity, and environmental sustainability. This area requires exhaustive study because of its wide application in different manufacturing sectors. The present article is related to the variant emerging 3D printing techniques and DIW of carbonaceous materials. Carbon-based materials, extensively used for various applications in 3D printing, possess impressive chemical stability, strength, and flexible nanostructure. Fine printable inks consist predominantly of uniform solutions of carbon materials, such as graphene, graphene oxide (GO), carbon fibers (CFs), carbon nanotubes (CNTs), and solvents. It also contains compatible polymers and suitable additives. This review article elaborately discusses the fundamental requirements of DIW in structuring carbon-doped polymeric inks viz. ink formulation, required ink rheology, extrusion parameters, print fidelity prediction, layer bonding examination, substrate selection, and curing method to achieve fine functional composites. A detailed description of its application in the fields of electronics, medical, and mechanical segments have also been focused in this study.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.