Pub Date : 2024-06-18eCollection Date: 2024-06-01DOI: 10.1089/3dp.2022.0338
Ziyue Wang, Zixuan Chen, Jianzhuang Xiao, Tao Ding
A novel shear test method on shear bond behavior of 3D printed interlayer interfaces and interstrip interfaces was proposed in this study. Thereafter, the effect of different replacement ratios of recycled sand, printing intervals, and surface treatments were investigated. The test results showed that under the same printing condition, the interfacial shear strengths of interlayer interface and interstrip interface were similar to each other. The interfacial shear strength slightly decreased with the increase of the replacement ratio of recycled sand, while it sharply decreased with the extension of printing interval time. The interfaces in 3D printed recycled mortar had higher time sensitivity compared with 3D printed natural mortar. Considering that discontinuous construction will introduce inferior interfaces in 3D printed concrete components, effective surface treatments should be conducted. According to the test results, the improvement effect of surface treatments was epoxy paste > cement paste > surface wetting > no treatment.
本研究提出了一种针对三维打印层间界面和条间界面剪切粘结行为的新型剪切试验方法。随后,研究了不同的再生砂替代率、打印间隔和表面处理的影响。试验结果表明,在相同的打印条件下,层间界面和条间界面的界面剪切强度相近。随着再生砂替代率的增加,界面剪切强度略有下降,而随着打印间隔时间的延长,界面剪切强度急剧下降。与三维打印天然砂浆相比,三维打印再生砂浆的界面具有更高的时间敏感性。考虑到非连续施工会给 3D 打印混凝土构件带来劣质界面,因此应进行有效的表面处理。测试结果表明,表面处理的改善效果依次为环氧浆 > 水泥浆 > 表面润湿 > 无处理。
{"title":"Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar.","authors":"Ziyue Wang, Zixuan Chen, Jianzhuang Xiao, Tao Ding","doi":"10.1089/3dp.2022.0338","DOIUrl":"10.1089/3dp.2022.0338","url":null,"abstract":"<p><p>A novel shear test method on shear bond behavior of 3D printed interlayer interfaces and interstrip interfaces was proposed in this study. Thereafter, the effect of different replacement ratios of recycled sand, printing intervals, and surface treatments were investigated. The test results showed that under the same printing condition, the interfacial shear strengths of interlayer interface and interstrip interface were similar to each other. The interfacial shear strength slightly decreased with the increase of the replacement ratio of recycled sand, while it sharply decreased with the extension of printing interval time. The interfaces in 3D printed recycled mortar had higher time sensitivity compared with 3D printed natural mortar. Considering that discontinuous construction will introduce inferior interfaces in 3D printed concrete components, effective surface treatments should be conducted. According to the test results, the improvement effect of surface treatments was epoxy paste > cement paste > surface wetting > no treatment.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"e1162-e1174"},"PeriodicalIF":2.3,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41354683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18eCollection Date: 2024-06-01DOI: 10.1089/3dp.2023.0016
Muhammad Arif Mahmood, Asif Ur Rehman, Marwan Khraisheh
In this work, we propose a methodology to develop printability maps for the laser powder bed fusion of AISI 316L stainless steel. Regions in the process space associated with different defect types, including lack of fusion, balling, and keyhole formation, have been considered as a melt pool geometry function, determined using a finite element method model containing temperature-dependent thermophysical properties. Experiments were performed to validate the printability maps, showing a reliable correlation between experiments and simulations. The validated simulation model was then applied to collect the data by varying laser scanning speed, laser power, powder layer thickness, and powder bed preheating temperature. Following this, the collected data were used to train and test the adaptive neuro-fuzzy interference system (ANFIS)-based machine learning model. The validated ANFIS model was used to develop printability maps by correlating the melt pool characteristics to the defect types. The smart printability maps produced by the proposed methodology can be used to identify the processing window to attain defects-free components, thus attaining dense parts.
{"title":"On the Development of Smart Framework for Printability Maps in Additive Manufacturing of AISI 316L Stainless Steel.","authors":"Muhammad Arif Mahmood, Asif Ur Rehman, Marwan Khraisheh","doi":"10.1089/3dp.2023.0016","DOIUrl":"10.1089/3dp.2023.0016","url":null,"abstract":"<p><p>In this work, we propose a methodology to develop printability maps for the laser powder bed fusion of AISI 316L stainless steel. Regions in the process space associated with different defect types, including lack of fusion, balling, and keyhole formation, have been considered as a melt pool geometry function, determined using a finite element method model containing temperature-dependent thermophysical properties. Experiments were performed to validate the printability maps, showing a reliable correlation between experiments and simulations. The validated simulation model was then applied to collect the data by varying laser scanning speed, laser power, powder layer thickness, and powder bed preheating temperature. Following this, the collected data were used to train and test the adaptive neuro-fuzzy interference system (ANFIS)-based machine learning model. The validated ANFIS model was used to develop printability maps by correlating the melt pool characteristics to the defect types. The smart printability maps produced by the proposed methodology can be used to identify the processing window to attain defects-free components, thus attaining dense parts.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"11 3","pages":"e1366-e1379"},"PeriodicalIF":2.3,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moisture absorption into hygroscopic/hydrophilic materials used in fused deposition modeling (FDM) can diminish desired mechanical properties. Sensitivity to moisture is dependent on material properties and environmental factors and needs characterization. In this article, moisture sensitivity of four grades of polylactic acid (PLA) filaments and four different ratios of PLA/polybutylene succinate (PBS) blended filaments were characterized through FDM printed American society for testing and materials (ASTM-D638) test samples after conditioning the filaments at different relative humidity levels. The tensile testing and scanning electron microscopy (SEM) of the samples' fracture surfaces revealed that PLA 4043D was the most moisture-sensitive among the chosen grades of PLA filaments. Through filament tension test and melt flow index (MFI) testing it was observed that moisture had a significant detrimental effect (20% reduction in tensile strength and 50% increase in MFI) on PLA 4043D filaments. Samples from moisture-conditioned PLA/PBS 75/25 blended filaments displayed a significant reduction (10%) in tensile strength. Moreover, the MFI of 75/25 filaments was increased with subsequent increases in moisture level. Investigation of tensile properties of ASTM samples made from four grades of PLA filaments exposed to room temperature and humidity conditions for 3 months showed an even more significant decrease in strength (ranging from 24% to 36%).
{"title":"Characterizing the Effect of Filament Moisture on Tensile Properties and Morphology of Fused Deposition Modeled Polylactic Acid/Polybutylene Succinate Parts.","authors":"Raihan Quader, Evan Dramko, David Grewell, Jed Randall, Lokesh Karthik Narayanan","doi":"10.1089/3dp.2022.0222","DOIUrl":"10.1089/3dp.2022.0222","url":null,"abstract":"<p><p>Moisture absorption into hygroscopic/hydrophilic materials used in fused deposition modeling (FDM) can diminish desired mechanical properties. Sensitivity to moisture is dependent on material properties and environmental factors and needs characterization. In this article, moisture sensitivity of four grades of polylactic acid (PLA) filaments and four different ratios of PLA/polybutylene succinate (PBS) blended filaments were characterized through FDM printed American society for testing and materials (ASTM-D638) test samples after conditioning the filaments at different relative humidity levels. The tensile testing and scanning electron microscopy (SEM) of the samples' fracture surfaces revealed that PLA 4043D was the most moisture-sensitive among the chosen grades of PLA filaments. Through filament tension test and melt flow index (MFI) testing it was observed that moisture had a significant detrimental effect (20% reduction in tensile strength and 50% increase in MFI) on PLA 4043D filaments. Samples from moisture-conditioned PLA/PBS 75/25 blended filaments displayed a significant reduction (10%) in tensile strength. Moreover, the MFI of 75/25 filaments was increased with subsequent increases in moisture level. Investigation of tensile properties of ASTM samples made from four grades of PLA filaments exposed to room temperature and humidity conditions for 3 months showed an even more significant decrease in strength (ranging from 24% to 36%).</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"e1151-e1161"},"PeriodicalIF":2.3,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60697395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Three-dimensional (3D) concrete printing technology has been considered promising, attracting extensive attention in the engineering field. Multiwalled carbon nanotubes (MWCNTs) have been used as an additive to reinforce the cement-based material. However, the research on the 3D printed MWCNT-reinforced high-strength concrete is rare. This research is to study the mechanical properties and pore structure of MWCNT-reinforced reactive powder concrete (RPC) for 3D printing. In this research, the workability of the printed RPC mixture with MWCNTs was first tested to pass the criteria of 3D printing. Then, the enhancement effect of MWCNTs on the printed RPC was tested by mechanical properties after hardening. Meanwhile, strength-displacement curves were recorded. In addition, the pore structures of printed RPC were observed and analyzed by X-ray computed tomography (CT) images. The results show that 0.05 wt% MWCNTs have no effect on the workability of the printable RPC slurry. MWCNTs could enhance the mechanical properties of the printed RPC by filling the flaws inside the samples, increasing the viscosity of the RPC slurry and forming bridges between cracks. Besides, 0.05 wt% MWCNTs may cause the failure mode of the printed RPC from brittle failure to ductile failure. In addition, MWCNTs significantly reduced the porosity of the printed RPC by decreasing pores with a volume over 0.01 mm3. As CT images show, the interlayer zone (IZ) of the 3D printed RPC sample is prone to pores, and a higher volume fraction is evident. In particular, within the volume of IZs, the minimum volume fraction at the IZ of 3D printed RPC appears on sample with MWCNTs.
三维(3D)混凝土打印技术被认为前景广阔,在工程领域引起了广泛关注。多壁碳纳米管(MWCNT)已被用作添加剂来增强水泥基材料。然而,有关 3D 打印 MWCNT 增强高强度混凝土的研究还很少见。本研究旨在研究用于 3D 打印的 MWCNT 增强反应粉末混凝土(RPC)的力学性能和孔隙结构。在这项研究中,首先测试了含有 MWCNT 的打印 RPC 混合物的可操作性,以通过 3D 打印的标准。然后,通过硬化后的力学性能测试 MWCNT 对打印 RPC 的增强效果。同时,记录了强度-位移曲线。此外,还通过 X 射线计算机断层扫描(CT)图像观察和分析了打印 RPC 的孔隙结构。结果表明,0.05 wt% 的 MWCNTs 对可印刷 RPC 泥浆的可操作性没有影响。通过填充样品内部的缺陷、增加 RPC 泥浆的粘度以及在裂缝之间形成桥接,MWCNTs 可以增强印刷 RPC 的机械性能。此外,0.05 wt% 的 MWCNTs 可使印刷 RPC 的破坏模式从脆性破坏转变为韧性破坏。此外,MWCNTs 还显著降低了印刷 RPC 的孔隙率,减少了体积超过 0.01 立方毫米的孔隙。CT 图像显示,三维打印 RPC 样品的层间区(IZ)容易出现孔隙,且体积分数明显较高。特别是在 IZ 体积内,含有 MWCNTs 的三维打印 RPC 样品的 IZ 体积分数最小。
{"title":"Mechanical Properties and Pore Structure of Multiwalled Carbon Nanotube-Reinforced Reactive Powder Concrete for Three-Dimensional Printing Manufactured by Material Extrusion.","authors":"Deyuan Kan, Guifeng Liu, Shuang Cindy Cao, Zhengfa Chen, Qifeng Lyu","doi":"10.1089/3dp.2022.0243","DOIUrl":"https://doi.org/10.1089/3dp.2022.0243","url":null,"abstract":"<p><p>Three-dimensional (3D) concrete printing technology has been considered promising, attracting extensive attention in the engineering field. Multiwalled carbon nanotubes (MWCNTs) have been used as an additive to reinforce the cement-based material. However, the research on the 3D printed MWCNT-reinforced high-strength concrete is rare. This research is to study the mechanical properties and pore structure of MWCNT-reinforced reactive powder concrete (RPC) for 3D printing. In this research, the workability of the printed RPC mixture with MWCNTs was first tested to pass the criteria of 3D printing. Then, the enhancement effect of MWCNTs on the printed RPC was tested by mechanical properties after hardening. Meanwhile, strength-displacement curves were recorded. In addition, the pore structures of printed RPC were observed and analyzed by X-ray computed tomography (CT) images. The results show that 0.05 wt% MWCNTs have no effect on the workability of the printable RPC slurry. MWCNTs could enhance the mechanical properties of the printed RPC by filling the flaws inside the samples, increasing the viscosity of the RPC slurry and forming bridges between cracks. Besides, 0.05 wt% MWCNTs may cause the failure mode of the printed RPC from brittle failure to ductile failure. In addition, MWCNTs significantly reduced the porosity of the printed RPC by decreasing pores with a volume over 0.01 mm<sup>3</sup>. As CT images show, the interlayer zone (IZ) of the 3D printed RPC sample is prone to pores, and a higher volume fraction is evident. In particular, within the volume of IZs, the minimum volume fraction at the IZ of 3D printed RPC appears on sample with MWCNTs.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"11 2","pages":"e675-e687"},"PeriodicalIF":3.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-04-16DOI: 10.1089/3dp.2022.0252
Qiang Yang, Mei Li, Ze Zhao, Ximeng Liao, Junchao Li
Binder jetting (3DP) is a kind of additive manufacturing at room temperature and atmospheric environment, which can reduce the risk of magnesium alloy forming. Magnesium alloy powder is bonded to a certain structure by a binder, so the appropriate binder is very important in 3DP. In this study, according to the characteristics of magnesium alloy, a simple and easy-to-obtain water-based low-molecular alcohol binder was used to reduce the difficulty of magnesium alloy 3DP. Additionally, we use COMSOL Multiphysics simulation software to establish a simulation model of the movement and deposition process of the binder. The results show that the increase in jet velocity will increase the quality and saturation of droplets. More importantly, the larger the jet velocity is, the larger the spreading width of the binder droplet after impacting the powder bed, which seriously affects the dimensional accuracy of the green part. In addition, lower binder saturation will weaken the formation of interparticle bonding neck and cannot form a stable structure. Furthermore, we analyzed the bond reactants of the binder and magnesium alloy powder, which eventually decompose into MgO, and the experimental results show that the final sintered sample has considerable performance.
{"title":"Simulation of Binder Jetting and Analysis of Magnesium Alloy Bonding Mechanism.","authors":"Qiang Yang, Mei Li, Ze Zhao, Ximeng Liao, Junchao Li","doi":"10.1089/3dp.2022.0252","DOIUrl":"10.1089/3dp.2022.0252","url":null,"abstract":"<p><p>Binder jetting (3DP) is a kind of additive manufacturing at room temperature and atmospheric environment, which can reduce the risk of magnesium alloy forming. Magnesium alloy powder is bonded to a certain structure by a binder, so the appropriate binder is very important in 3DP. In this study, according to the characteristics of magnesium alloy, a simple and easy-to-obtain water-based low-molecular alcohol binder was used to reduce the difficulty of magnesium alloy 3DP. Additionally, we use COMSOL Multiphysics simulation software to establish a simulation model of the movement and deposition process of the binder. The results show that the increase in jet velocity will increase the quality and saturation of droplets. More importantly, the larger the jet velocity is, the larger the spreading width of the binder droplet after impacting the powder bed, which seriously affects the dimensional accuracy of the green part. In addition, lower binder saturation will weaken the formation of interparticle bonding neck and cannot form a stable structure. Furthermore, we analyzed the bond reactants of the binder and magnesium alloy powder, which eventually decompose into MgO, and the experimental results show that the final sintered sample has considerable performance.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"e751-e763"},"PeriodicalIF":3.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60697458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-04-16DOI: 10.1089/3dp.2022.0148
Philipp Eyer, Sarah Enzler, Anna Trauth, Kay André Weidenmann
Additive manufacturing processes have recently been used more frequently since they offer high design freedom and easy individualization of components. The processes have been optimized to improve mechanical performance of the manufactured parts. Nevertheless, properties of components made by means of injection molding could not be reached yet. In the study at hand, ultrasonic phase spectroscopy (UPS) is used to compare the elastic properties of acrylonitrile butadiene styrene specimens manufactured by injection molding, by fused filament fabrication, and the Arburg plastic freeforming process. UPS allows a nondestructive and prompt determination of the elastic modulus and allows evaluation of the mechanical properties in every direction in space. In the end, results of UPS are compared with properties derived by uniaxial tensile tests to validate UPS as a test method for the determination of the mechanical properties of polymers. Regardless of the manufacturing process, an approximately linear dependence of the elastic moduli on the density can be determined. Furthermore, the quasistatic properties of the injection molded samples consistently exhibit the mechanical properties of the other samples by at least 10%.
{"title":"Investigating the Mechanical Properties of Polymer Samples from Different Additive Manufacturing Processes Using Ultrasonic Phase Spectroscopy.","authors":"Philipp Eyer, Sarah Enzler, Anna Trauth, Kay André Weidenmann","doi":"10.1089/3dp.2022.0148","DOIUrl":"https://doi.org/10.1089/3dp.2022.0148","url":null,"abstract":"<p><p>Additive manufacturing processes have recently been used more frequently since they offer high design freedom and easy individualization of components. The processes have been optimized to improve mechanical performance of the manufactured parts. Nevertheless, properties of components made by means of injection molding could not be reached yet. In the study at hand, ultrasonic phase spectroscopy (UPS) is used to compare the elastic properties of acrylonitrile butadiene styrene specimens manufactured by injection molding, by fused filament fabrication, and the Arburg plastic freeforming process. UPS allows a nondestructive and prompt determination of the elastic modulus and allows evaluation of the mechanical properties in every direction in space. In the end, results of UPS are compared with properties derived by uniaxial tensile tests to validate UPS as a test method for the determination of the mechanical properties of polymers. Regardless of the manufacturing process, an approximately linear dependence of the elastic moduli on the density can be determined. Furthermore, the quasistatic properties of the injection molded samples consistently exhibit the mechanical properties of the other samples by at least 10%.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"11 2","pages":"e666-e674"},"PeriodicalIF":3.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-04-16DOI: 10.1089/3dp.2022.0112
Chunxin Liu, Taras Oriekhov, Cherrie Lee, Clarissa M Harvey, Michael Fokine
Rapid manufacturing of high purity fused silica glass micro-optics using a filament-based glass 3D printer has been demonstrated. A multilayer 5 × 5 microlens array was printed and subsequently characterized, showing fully dense lenses with uniform focal lengths and good imaging performance. A surface roughness on the order of Ra = 0.12 nm was achieved. Printing time for each lens was <10 s. Creating arrays with multifocal imaging capabilities was possible by individually varying the number of printed layers and radius for each lens, effectively changing the lens height and curvature. Glass 3D printing is shown in this study to be a versatile approach for fabricating silica micro-optics suitable for rapid prototyping or manufacturing.
使用基于长丝的玻璃三维打印机快速制造高纯度熔融石英玻璃微光学器件的技术已经得到验证。打印出的多层 5 × 5 微透镜阵列随后进行了表征,显示出具有均匀焦距和良好成像性能的全致密透镜。表面粗糙度为 Ra = 0.12 nm。每个透镜的打印时间为
{"title":"Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing.","authors":"Chunxin Liu, Taras Oriekhov, Cherrie Lee, Clarissa M Harvey, Michael Fokine","doi":"10.1089/3dp.2022.0112","DOIUrl":"10.1089/3dp.2022.0112","url":null,"abstract":"<p><p>Rapid manufacturing of high purity fused silica glass micro-optics using a filament-based glass 3D printer has been demonstrated. A multilayer 5 × 5 microlens array was printed and subsequently characterized, showing fully dense lenses with uniform focal lengths and good imaging performance. A surface roughness on the order of <i>R<sub>a</sub></i> = 0.12 nm was achieved. Printing time for each lens was <10 s. Creating arrays with multifocal imaging capabilities was possible by individually varying the number of printed layers and radius for each lens, effectively changing the lens height and curvature. Glass 3D printing is shown in this study to be a versatile approach for fabricating silica micro-optics suitable for rapid prototyping or manufacturing.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"460-466"},"PeriodicalIF":3.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60697351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-02-15DOI: 10.1089/3dp.2022.0216
Shreeprasad S Manohar, Chinmoy Das, Vikramjit Kakati
The wide development in biomedical, regenerative medicine, and surgical techniques has ensured that new technologies are developed to improve patient-specific treatment and care. Tissue engineering is a special field in biomedical engineering that works toward cell development using scaffolds. Bone tissue engineering is a separate branch of tissue engineering, in which the construction of bone, functionalities of bone, and bone tissue regeneration are studied in detail to repair or regenerate new functional bone tissues. In India alone, people suffering from bone diseases are extensive in numbers. Almost 15% to 20% of the population suffers from osteoporosis. Bone scaffolds are proving to be an excellent solution for osseous abnormalities or defect treatment. Scaffolds are three dimensional (3D) and mostly porous structures created to enhance new tissue growth. Bone scaffolds are specially designed to promote osteoinductive cell growth, expansion, and migration on their surface. This review article aims to provide an overview of possible bone scaffolding materials in practice, different 3D techniques to fabricate these scaffolds, and effective bone scaffold characteristics targeted by researchers to fabricate tissue-engineered bone scaffolds.
{"title":"Bone Tissue Engineering Scaffolds: Materials and Methods.","authors":"Shreeprasad S Manohar, Chinmoy Das, Vikramjit Kakati","doi":"10.1089/3dp.2022.0216","DOIUrl":"10.1089/3dp.2022.0216","url":null,"abstract":"<p><p>The wide development in biomedical, regenerative medicine, and surgical techniques has ensured that new technologies are developed to improve patient-specific treatment and care. Tissue engineering is a special field in biomedical engineering that works toward cell development using scaffolds. Bone tissue engineering is a separate branch of tissue engineering, in which the construction of bone, functionalities of bone, and bone tissue regeneration are studied in detail to repair or regenerate new functional bone tissues. In India alone, people suffering from bone diseases are extensive in numbers. Almost 15% to 20% of the population suffers from osteoporosis. Bone scaffolds are proving to be an excellent solution for osseous abnormalities or defect treatment. Scaffolds are three dimensional (3D) and mostly porous structures created to enhance new tissue growth. Bone scaffolds are specially designed to promote osteoinductive cell growth, expansion, and migration on their surface. This review article aims to provide an overview of possible bone scaffolding materials in practice, different 3D techniques to fabricate these scaffolds, and effective bone scaffold characteristics targeted by researchers to fabricate tissue-engineered bone scaffolds.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"11 1","pages":"347-362"},"PeriodicalIF":3.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-02-15DOI: 10.1089/3dp.2023.29022.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/3dp.2023.29022.ack","DOIUrl":"https://doi.org/10.1089/3dp.2023.29022.ack","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"11 1","pages":"415-417"},"PeriodicalIF":3.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10886422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. T. Wibisono, Cho Pei Jiang, David Culler, Ehsan Toyserkani
{"title":"Laser Powder Bed Fusion of Stainless Steel 316L for Rectangular Micropillar Array with High Geometrical Accuracy and Hardness","authors":"A. T. Wibisono, Cho Pei Jiang, David Culler, Ehsan Toyserkani","doi":"10.1089/3dp.2023.0177","DOIUrl":"https://doi.org/10.1089/3dp.2023.0177","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"65 2","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139390081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}