Shuqi Wang, Chi-Yang Chiu, Alexander F. Wilson, Joan E. Bailey-Wilson, Elvira Agron, Emily Y. Chew, Jaeil Ahn, Momiao Xiong, Ruzong Fan
{"title":"Gene-level association analysis of bivariate ordinal traits with functional regressions","authors":"Shuqi Wang, Chi-Yang Chiu, Alexander F. Wilson, Joan E. Bailey-Wilson, Elvira Agron, Emily Y. Chew, Jaeil Ahn, Momiao Xiong, Ruzong Fan","doi":"10.1002/gepi.22524","DOIUrl":null,"url":null,"abstract":"<p>In genetic studies, many phenotypes have multiple naturally ordered discrete values. The phenotypes can be correlated with each other. If multiple correlated ordinal traits are analyzed simultaneously, the power of analysis may increase significantly while the false positives can be controlled well. In this study, we propose bivariate functional ordinal linear regression (BFOLR) models using latent regressions with cumulative logit link or probit link to perform a gene-based analysis for bivariate ordinal traits and sequencing data. In the proposed BFOLR models, genetic variant data are viewed as stochastic functions of physical positions, and the genetic effects are treated as a function of physical positions. The BFOLR models take the correlation of the two ordinal traits into account via latent variables. The BFOLR models are built upon functional data analysis which can be revised to analyze the bivariate ordinal traits and high-dimension genetic data. The methods are flexible and can analyze three types of genetic data: (1) rare variants only, (2) common variants only, and (3) a combination of rare and common variants. Extensive simulation studies show that the likelihood ratio tests of the BFOLR models control type I errors well and have good power performance. The BFOLR models are applied to analyze Age-Related Eye Disease Study data, in which two genes, CFH and ARMS2, are found to strongly associate with eye drusen size, drusen area, age-related macular degeneration (AMD) categories, and AMD severity scale.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 6","pages":"409-431"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22524","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1
Abstract
In genetic studies, many phenotypes have multiple naturally ordered discrete values. The phenotypes can be correlated with each other. If multiple correlated ordinal traits are analyzed simultaneously, the power of analysis may increase significantly while the false positives can be controlled well. In this study, we propose bivariate functional ordinal linear regression (BFOLR) models using latent regressions with cumulative logit link or probit link to perform a gene-based analysis for bivariate ordinal traits and sequencing data. In the proposed BFOLR models, genetic variant data are viewed as stochastic functions of physical positions, and the genetic effects are treated as a function of physical positions. The BFOLR models take the correlation of the two ordinal traits into account via latent variables. The BFOLR models are built upon functional data analysis which can be revised to analyze the bivariate ordinal traits and high-dimension genetic data. The methods are flexible and can analyze three types of genetic data: (1) rare variants only, (2) common variants only, and (3) a combination of rare and common variants. Extensive simulation studies show that the likelihood ratio tests of the BFOLR models control type I errors well and have good power performance. The BFOLR models are applied to analyze Age-Related Eye Disease Study data, in which two genes, CFH and ARMS2, are found to strongly associate with eye drusen size, drusen area, age-related macular degeneration (AMD) categories, and AMD severity scale.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.