Pub Date : 2025-01-01Epub Date: 2024-10-09DOI: 10.1002/gepi.22588
Aubrey C Annis, Vidhya Gunaseelan, Albert V Smith, Gonçalo R Abecasis, Daniel B Larach, Matthew Zawistowski, Stephan G Frangakis, Chad M Brummett
Persistent opioid use after surgery is a common morbidity outcome associated with subsequent opioid use disorder, overdose, and death. While phenotypic associations have been described, genetic associations remain unidentified. Here, we conducted the largest genetic study of persistent opioid use after surgery, comprising ~40,000 non-Hispanic, European-ancestry Michigan Genomics Initiative participants (3198 cases and 36,321 surgically exposed controls). Our study primarily focused on the reproducibility and reliability of 72 genetic studies of opioid use disorder phenotypes. Nominal associations (p < 0.05) occurred at 12 of 80 unique (r2 < 0.8) signals from these studies. Six occurred in OPRM1 (most significant: rs79704991-T, OR = 1.17, p = 8.7 × 10-5), with two surviving multiple testing correction. Other associations were rs640561-LRRIQ3 (p = 0.015), rs4680-COMT (p = 0.016), rs9478495 (p = 0.017, intergenic), rs10886472-GRK5 (p = 0.028), rs9291211-SLC30A9/BEND4 (p = 0.043), and rs112068658-KCNN1 (p = 0.048). Two highly referenced genes, OPRD1 and DRD2/ANKK1, had no signals in MGI. Associations at previously identified OPRM1 variants suggest common biology between persistent opioid use and opioid use disorder, further demonstrating connections between opioid dependence and addiction phenotypes. Lack of significant associations at other variants challenges previous studies' reliability.
{"title":"Genetic Associations of Persistent Opioid Use After Surgery Point to OPRM1 but Not Other Opioid-Related Loci as the Main Driver of Opioid Use Disorder.","authors":"Aubrey C Annis, Vidhya Gunaseelan, Albert V Smith, Gonçalo R Abecasis, Daniel B Larach, Matthew Zawistowski, Stephan G Frangakis, Chad M Brummett","doi":"10.1002/gepi.22588","DOIUrl":"10.1002/gepi.22588","url":null,"abstract":"<p><p>Persistent opioid use after surgery is a common morbidity outcome associated with subsequent opioid use disorder, overdose, and death. While phenotypic associations have been described, genetic associations remain unidentified. Here, we conducted the largest genetic study of persistent opioid use after surgery, comprising ~40,000 non-Hispanic, European-ancestry Michigan Genomics Initiative participants (3198 cases and 36,321 surgically exposed controls). Our study primarily focused on the reproducibility and reliability of 72 genetic studies of opioid use disorder phenotypes. Nominal associations (p < 0.05) occurred at 12 of 80 unique (r<sup>2</sup> < 0.8) signals from these studies. Six occurred in OPRM1 (most significant: rs79704991-T, OR = 1.17, p = 8.7 × 10<sup>-5</sup>), with two surviving multiple testing correction. Other associations were rs640561-LRRIQ3 (p = 0.015), rs4680-COMT (p = 0.016), rs9478495 (p = 0.017, intergenic), rs10886472-GRK5 (p = 0.028), rs9291211-SLC30A9/BEND4 (p = 0.043), and rs112068658-KCNN1 (p = 0.048). Two highly referenced genes, OPRD1 and DRD2/ANKK1, had no signals in MGI. Associations at previously identified OPRM1 variants suggest common biology between persistent opioid use and opioid use disorder, further demonstrating connections between opioid dependence and addiction phenotypes. Lack of significant associations at other variants challenges previous studies' reliability.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":" ","pages":"e22588"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel J M Crouch, Jamie R J Inshaw, Catherine C Robertson, Esther Ng, Jia-Yuan Zhang, Wei-Min Chen, Suna Onengut-Gumuscu, Antony J Cutler, Carlo Sidore, Francesco Cucca, Flemming Pociot, Patrick Concannon, Stephen S Rich, John A Todd
Biological datasets often consist of thousands or millions of variables, e.g. genetic variants or biomarkers, and when sample sizes are large it is common to find many associated with an outcome of interest, for example, disease risk in a GWAS, at high levels of statistical significance, but with very small effects. The False Discovery Rate (FDR) is used to identify effects of interest based on ranking variables according to their statistical significance. Here, we develop a complementary measure to the FDR, the priorityFDR, that ranks variables by a combination of effect size and significance, allowing further prioritisation among a set of variables that pass a significance or FDR threshold. Applying to the largest GWAS of type 1 diabetes to date (15,573 cases and 158,408 controls), we identified 26 independent genetic associations, including two newly-reported loci, with qualitatively lower priorityFDRs than the remaining 175 signals. We detected putatively causal type 1 diabetes risk genes using Mendelian Randomisation, and found that these were located disproportionately close to low priorityFDR signals (p = 0.005), as were genes in the IL-2 pathway (p = 0.003). Selecting variables on both effect size and significance can lead to improved prioritisation for mechanistic follow-up studies from genetic and other large biological datasets.
{"title":"Bayesian Effect Size Ranking to Prioritise Genetic Risk Variants in Common Diseases for Follow-Up Studies.","authors":"Daniel J M Crouch, Jamie R J Inshaw, Catherine C Robertson, Esther Ng, Jia-Yuan Zhang, Wei-Min Chen, Suna Onengut-Gumuscu, Antony J Cutler, Carlo Sidore, Francesco Cucca, Flemming Pociot, Patrick Concannon, Stephen S Rich, John A Todd","doi":"10.1002/gepi.22608","DOIUrl":"10.1002/gepi.22608","url":null,"abstract":"<p><p>Biological datasets often consist of thousands or millions of variables, e.g. genetic variants or biomarkers, and when sample sizes are large it is common to find many associated with an outcome of interest, for example, disease risk in a GWAS, at high levels of statistical significance, but with very small effects. The False Discovery Rate (FDR) is used to identify effects of interest based on ranking variables according to their statistical significance. Here, we develop a complementary measure to the FDR, the priorityFDR, that ranks variables by a combination of effect size and significance, allowing further prioritisation among a set of variables that pass a significance or FDR threshold. Applying to the largest GWAS of type 1 diabetes to date (15,573 cases and 158,408 controls), we identified 26 independent genetic associations, including two newly-reported loci, with qualitatively lower priorityFDRs than the remaining 175 signals. We detected putatively causal type 1 diabetes risk genes using Mendelian Randomisation, and found that these were located disproportionately close to low priorityFDR signals (p = 0.005), as were genes in the IL-2 pathway (p = 0.003). Selecting variables on both effect size and significance can lead to improved prioritisation for mechanistic follow-up studies from genetic and other large biological datasets.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":"e22608"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naomi Wilcox, Jonathan P Tyrer, Joe Dennis, Xin Yang, John R B Perry, Eugene J Gardner, Douglas F Easton
In large cohort studies the number of unaffected individuals outnumbers the number of affected individuals, and the power can be low to detect associations for outcomes with low prevalence. We consider how including recorded family history in regression models increases the power to detect associations between genetic variants and disease risk. We show theoretically and using Monte-Carlo simulations that including a family history of the disease, with a weighting of 0.5 compared with true cases, increases the power to detect associations. This is a powerful approach for detecting variants with moderate effects, but for larger effect sizes a weighting of > 0.5 can be more powerful. We illustrate this both for common variants and for exome sequencing data for over 400,000 individuals in UK Biobank to evaluate the association between the burden of protein-truncating variants in genes and risk for four cancer types.
{"title":"Using Family History Data to Improve the Power of Association Studies: Application to Cancer in UK Biobank.","authors":"Naomi Wilcox, Jonathan P Tyrer, Joe Dennis, Xin Yang, John R B Perry, Eugene J Gardner, Douglas F Easton","doi":"10.1002/gepi.22609","DOIUrl":"https://doi.org/10.1002/gepi.22609","url":null,"abstract":"<p><p>In large cohort studies the number of unaffected individuals outnumbers the number of affected individuals, and the power can be low to detect associations for outcomes with low prevalence. We consider how including recorded family history in regression models increases the power to detect associations between genetic variants and disease risk. We show theoretically and using Monte-Carlo simulations that including a family history of the disease, with a weighting of 0.5 compared with true cases, increases the power to detect associations. This is a powerful approach for detecting variants with moderate effects, but for larger effect sizes a weighting of > 0.5 can be more powerful. We illustrate this both for common variants and for exome sequencing data for over 400,000 individuals in UK Biobank to evaluate the association between the burden of protein-truncating variants in genes and risk for four cancer types.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":"e22609"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gorfine, M., Qu, C.,Peters, U., & Hsu, L. (2024). Unveiling challenges in Mendelian randomization for gene-environment interaction. Genetic Epidemiology, 48, 164–189. https://doi.org/10.1002/gepi.22552
Gorfine, M., Qu, C.,Peters, U., & Hsu, L. (2024)。揭示孟德尔随机化在基因与环境相互作用方面的挑战。Genetic Epidemiology, 48, 164-189. https://doi.org/10.1002/gepi.22552
{"title":"Additional article of this Special Issue was previously published in another issue of Genetic Epidemiology. That is:","authors":"","doi":"10.1002/gepi.22604","DOIUrl":"https://doi.org/10.1002/gepi.22604","url":null,"abstract":"<p>Gorfine, M., Qu, C.,Peters, U., & Hsu, L. (2024). Unveiling challenges in Mendelian randomization for gene-environment interaction. Genetic Epidemiology, 48, 164–189. https://doi.org/10.1002/gepi.22552</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 8","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Janaka S. S. Liyanage, Jane S. Hankins, Jeremie H. Estepp, Deokumar Srivastava, Sara R. Rashkin, Clifford Takemoto, Yun Li, Yuehua Cui, Motomi Mori, Mitchell J. Weiss, Guolian Kang