Jessica M Hoffman, Britta Schmitz, Johannes U Pfabe, Sarah A Ohrnberger, Teresa G Valencak
{"title":"Lactating SKH-1 furless mice prioritize own comfort over growth of their pups.","authors":"Jessica M Hoffman, Britta Schmitz, Johannes U Pfabe, Sarah A Ohrnberger, Teresa G Valencak","doi":"10.1007/s00360-023-01498-1","DOIUrl":null,"url":null,"abstract":"<p><p>Lactation is the most energetically demanding physiological process that occurs in mammalian females, and as a consequence of this energy expenditure, lactating females produce an enormous amount of excess heat. This heat is thought to limit the amount of milk a mother produces, and by improving heat dissipation, females may improve their milk production and offspring quality. Here we used SKH-1 hairless mice as a natural model of improved heat dissipation. Lactating mothers were given access to a secondary cage to rest away from their pups, and this secondary cage was kept either at room temperature (22 °C) in the control rounds or cooled to 8 °C in the experimental groups. We hypothesized that the cold exposure would maximize the heat dissipation potential, leading to increased milk production and healthier pups even in the hairless mouse model. However, we found the opposite, where cold exposure allowed mothers to eat more food, but they produced smaller weight pups at the end of lactation. Our results suggest that mothers prioritize their own fitness, even if it lowers the fitness of their offspring in this particular mouse strain. This maternal-offspring trade-off is interesting and requires future studies to understand the full interaction of maternal effects and offspring fitness in the light of the heat dissipation limitation.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":"193 4","pages":"453-459"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-023-01498-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactation is the most energetically demanding physiological process that occurs in mammalian females, and as a consequence of this energy expenditure, lactating females produce an enormous amount of excess heat. This heat is thought to limit the amount of milk a mother produces, and by improving heat dissipation, females may improve their milk production and offspring quality. Here we used SKH-1 hairless mice as a natural model of improved heat dissipation. Lactating mothers were given access to a secondary cage to rest away from their pups, and this secondary cage was kept either at room temperature (22 °C) in the control rounds or cooled to 8 °C in the experimental groups. We hypothesized that the cold exposure would maximize the heat dissipation potential, leading to increased milk production and healthier pups even in the hairless mouse model. However, we found the opposite, where cold exposure allowed mothers to eat more food, but they produced smaller weight pups at the end of lactation. Our results suggest that mothers prioritize their own fitness, even if it lowers the fitness of their offspring in this particular mouse strain. This maternal-offspring trade-off is interesting and requires future studies to understand the full interaction of maternal effects and offspring fitness in the light of the heat dissipation limitation.
期刊介绍:
The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.