Julia Slezacek, Leonida Fusani, Hiroyuki Kaiya, Petra Quillfeldt
{"title":"A first glimpse into circulating ghrelin patterns of thin-billed prion chicks (Pachyptila belcheri).","authors":"Julia Slezacek, Leonida Fusani, Hiroyuki Kaiya, Petra Quillfeldt","doi":"10.1007/s00360-025-01602-7","DOIUrl":null,"url":null,"abstract":"<p><p>The peptide hormone ghrelin, also known as \"hunger hormone\", is primarily secreted by the stomach and plays a key role in the regulation of vertebrate appetite and energy balance. While the hunger hormone and its functions have been extensively researched in mammalian species, its physiological roles have received less attention in birds and knowledge on the ghrelin system is especially poor in wild avian species. In contrast to mammals, ghrelin acts as an anorexigenic signal in birds and suppresses food intake. In this study, we focussed on the altricial chicks of thin-billed prions (Pachyptila belcheri) which are subjected to irregular, up to 8 day-long fasts, while waiting for their parents to return from feeding trips. We show that thin-billed prion chicks, which received a meal in the night prior to sampling, had higher circulating ghrelin levels than fasting conspecifics. Ghrelin levels did not correlate with chick body condition, meal size, or the length of a fast. Our study adds to past literature supporting an anorexigenic effect of avian ghrelin and is among the first to describe ghrelin profiles in seabirds, thereby significantly contributing to the scarce literature on ghrelin in wild avian species.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-025-01602-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The peptide hormone ghrelin, also known as "hunger hormone", is primarily secreted by the stomach and plays a key role in the regulation of vertebrate appetite and energy balance. While the hunger hormone and its functions have been extensively researched in mammalian species, its physiological roles have received less attention in birds and knowledge on the ghrelin system is especially poor in wild avian species. In contrast to mammals, ghrelin acts as an anorexigenic signal in birds and suppresses food intake. In this study, we focussed on the altricial chicks of thin-billed prions (Pachyptila belcheri) which are subjected to irregular, up to 8 day-long fasts, while waiting for their parents to return from feeding trips. We show that thin-billed prion chicks, which received a meal in the night prior to sampling, had higher circulating ghrelin levels than fasting conspecifics. Ghrelin levels did not correlate with chick body condition, meal size, or the length of a fast. Our study adds to past literature supporting an anorexigenic effect of avian ghrelin and is among the first to describe ghrelin profiles in seabirds, thereby significantly contributing to the scarce literature on ghrelin in wild avian species.
期刊介绍:
The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.