Zhixing Gao, Yuqi Wang, Xingchen Xu, Chaohong Zhang, Zhiwei Dai, Haiying Zhang, Jun Zhang, Hao Yang
{"title":"A Portable Cardiac Dynamic Monitoring System in the Framework of Electro-Mechano-Acoustic Mapping.","authors":"Zhixing Gao, Yuqi Wang, Xingchen Xu, Chaohong Zhang, Zhiwei Dai, Haiying Zhang, Jun Zhang, Hao Yang","doi":"10.1109/TBCAS.2023.3307188","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormalities in cardiac function arise irregularly and typically involve multimodal electrical, mechanical vibrations, and acoustics alterations. This paper proposes an Electro-Mechano-Acoustic (EMA) activity model for mapping the complete macroscopic cardiac function to refine the systematic interpretation of cardiac multimodal assessment. We abstract this activity pattern and build the mapping system by analyzing the functional comparison of the heart pump and Electronic Fuel Injection (EFI) system from the multimodal characteristics of the heart. Electrocardiogram (ECG), seismocardiogram (SCG) & Ultra-Low Frequency seismocardiogram (ULF-SCG), and Phonocardiogram (PCG) are selected to implement the EMA mapping respectively. First, a novel low-frequency cardiograph compound sensor capable of extracting both SCG and ULF-SCG is proposed, which is integrated with ECG and PCG modules on a single hardware device for portable dynamic acquisition. Afterward, a multimodal signal processing chain further analyses the acquired synchronized signals, and the extracted ULF-SCG is shown to indicate changes in heart volume. In particular, the proposed method based on waveform curvature is used to extract 9 feature points of the SCG signal, and the overall recognition accuracy reaches over 90% in the data collected by EMA portable device. Ultimately, we integrate the portable device and signal processing chains to form the EMA cardiovascular mapping system (EMACMS). As a next-generation system solution for cardiac daily dynamic monitoring, which can map the mechanical coupling and electromechanical coupling process, extract multi-characteristic heart rate variability (HRV), and enable extraction of important time intervals of cardiac activity to assess cardiac function.</p>","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"PP ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2023.3307188","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abnormalities in cardiac function arise irregularly and typically involve multimodal electrical, mechanical vibrations, and acoustics alterations. This paper proposes an Electro-Mechano-Acoustic (EMA) activity model for mapping the complete macroscopic cardiac function to refine the systematic interpretation of cardiac multimodal assessment. We abstract this activity pattern and build the mapping system by analyzing the functional comparison of the heart pump and Electronic Fuel Injection (EFI) system from the multimodal characteristics of the heart. Electrocardiogram (ECG), seismocardiogram (SCG) & Ultra-Low Frequency seismocardiogram (ULF-SCG), and Phonocardiogram (PCG) are selected to implement the EMA mapping respectively. First, a novel low-frequency cardiograph compound sensor capable of extracting both SCG and ULF-SCG is proposed, which is integrated with ECG and PCG modules on a single hardware device for portable dynamic acquisition. Afterward, a multimodal signal processing chain further analyses the acquired synchronized signals, and the extracted ULF-SCG is shown to indicate changes in heart volume. In particular, the proposed method based on waveform curvature is used to extract 9 feature points of the SCG signal, and the overall recognition accuracy reaches over 90% in the data collected by EMA portable device. Ultimately, we integrate the portable device and signal processing chains to form the EMA cardiovascular mapping system (EMACMS). As a next-generation system solution for cardiac daily dynamic monitoring, which can map the mechanical coupling and electromechanical coupling process, extract multi-characteristic heart rate variability (HRV), and enable extraction of important time intervals of cardiac activity to assess cardiac function.
期刊介绍:
The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.