Pub Date : 2019-07-22DOI: 10.1109/TBCAS.2019.2930215
Ni Wang, Jun Zhou, Guanghai Dai, Jiahui Huang, Yuxiang Xie
Wearable intelligent ECG monitoring devices can perform automatic ECG diagnosis in real time and send out alert signal together with abnormal ECG signal for doctor's further analysis. This provides a means for the patient to identify their heart problem as early as possible and go to doctors for medical treatment. For such system the key requirements include high accuracy and low power consumption. However, the existing wearable intelligent ECG monitoring schemes suffer from high power consumption in both ECG diagnosis and transmission in order to achieve high accuracy. In this work, we have proposed an energy-efficient wearable intelligent ECG monitor scheme with two-stage end-to-end neural network and diagnosis-based adaptive compression. Compared to the state-of-the-art schemes, it significantly reduces the power consumption in ECG diagnosis and transmission while maintaining high accuracy.
{"title":"Energy-Efficient Intelligent ECG Monitoring for Wearable Devices","authors":"Ni Wang, Jun Zhou, Guanghai Dai, Jiahui Huang, Yuxiang Xie","doi":"10.1109/TBCAS.2019.2930215","DOIUrl":"https://doi.org/10.1109/TBCAS.2019.2930215","url":null,"abstract":"Wearable intelligent ECG monitoring devices can perform automatic ECG diagnosis in real time and send out alert signal together with abnormal ECG signal for doctor's further analysis. This provides a means for the patient to identify their heart problem as early as possible and go to doctors for medical treatment. For such system the key requirements include high accuracy and low power consumption. However, the existing wearable intelligent ECG monitoring schemes suffer from high power consumption in both ECG diagnosis and transmission in order to achieve high accuracy. In this work, we have proposed an energy-efficient wearable intelligent ECG monitor scheme with two-stage end-to-end neural network and diagnosis-based adaptive compression. Compared to the state-of-the-art schemes, it significantly reduces the power consumption in ECG diagnosis and transmission while maintaining high accuracy.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"13 1","pages":"1112-1121"},"PeriodicalIF":5.1,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2019.2930215","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62967101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-08-01DOI: 10.1109/TBCAS.2016.2622738
Xilin Liu, Milin Zhang, A. Richardson, T. Lucas, J. van der Spiegel
This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18$mu$ m CMOS technology, occupying a silicon area of 3.7 mm$^2$. The chip dissipates 56 $mu$W/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.
本文提出了一种双向脑机接口(BMI)微系统,用于闭环神经科学研究,特别是在自由行为动物身上的实验。片上系统(SoC)由16通道神经记录前端、神经特征提取单元、16通道可编程神经刺激器后端、通道内可编程闭环控制器、全局模数转换器(ADC)和外围电路组成。所提出的神经特征提取单元包括1)实现64步自然对数域频率调谐的超低功耗神经能量提取单元,以及2)具有时幅窗鉴别器的电流模式动作电位(AP)检测单元。一个可编程的比例-积分-导数(PID)控制器已集成在每个通道,使各种闭环操作。所实现的ADC包括一个用于神经特征输出和/或局部场电位(LFP)输出数字化的10位电压模式连续逼近寄存器(SAR) ADC,以及一个用于动作电位输出数字化的8位电流模式SAR ADC。该多模式刺激器可编程为在任意通道配置中执行单极或双极、对称或不对称电荷平衡刺激,最大电流为4 mA。该芯片采用0.18$mu$ m CMOS技术制造,占据了3.7 mm$^2$的硅面积。芯片平均耗散56 $mu$W/ch。系统集成了带蓝牙模块的通用低功耗微控制器,提供无线链路和SoC配置。本文提出的方法、电路技术和系统拓扑可以广泛应用于相关的神经生理学研究,特别是闭环BMI实验。
{"title":"Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control","authors":"Xilin Liu, Milin Zhang, A. Richardson, T. Lucas, J. van der Spiegel","doi":"10.1109/TBCAS.2016.2622738","DOIUrl":"https://doi.org/10.1109/TBCAS.2016.2622738","url":null,"abstract":"This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18<inline-formula><tex-math notation=\"LaTeX\">$mu$</tex-math></inline-formula> m CMOS technology, occupying a silicon area of 3.7 mm<inline-formula><tex-math notation=\"LaTeX\">$^2$</tex-math></inline-formula>. The chip dissipates 56 <inline-formula><tex-math notation=\"LaTeX\">$mu$</tex-math></inline-formula>W/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"11 1","pages":"729-742"},"PeriodicalIF":5.1,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2622738","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62966491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1109/BIOCAS.2017.8325171
R. James, J. Garside, Michael Hopkins, L. Plana, S. Temple, Simon Davidson, S. Furber
This paper summarises recent efforts into implementing a model of the inner hair cell and auditory nerve on a neuromorphic hardware platform, the SpiNNaker machine. Such an implementation exploits the massive parallelism of the target architecture to obtain real-time modelling to a biologically realistic number of human auditory nerve fibres. The potential for incorporating this implementation into a full-scale digital realtime model of the human auditory pathway is then discussed.
{"title":"Parallel distribution of an inner hair cell and auditory nerve model for real-time application","authors":"R. James, J. Garside, Michael Hopkins, L. Plana, S. Temple, Simon Davidson, S. Furber","doi":"10.1109/BIOCAS.2017.8325171","DOIUrl":"https://doi.org/10.1109/BIOCAS.2017.8325171","url":null,"abstract":"This paper summarises recent efforts into implementing a model of the inner hair cell and auditory nerve on a neuromorphic hardware platform, the SpiNNaker machine. Such an implementation exploits the massive parallelism of the target architecture to obtain real-time modelling to a biologically realistic number of human auditory nerve fibres. The potential for incorporating this implementation into a full-scale digital realtime model of the human auditory pathway is then discussed.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"1 1","pages":"1-4"},"PeriodicalIF":5.1,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BIOCAS.2017.8325171","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62152843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.1109/TBCAS.2016.2599406
Xiao-Peng Bi, Tian Xie, B. Fan, W. Khan, Yue Guo, Wen Li
Optogenetics is a fast growing neuromodulation method, which can remotely manipulate the specific activities of genetically-targeted neural cells and associated biological behaviors with millisecond temporal precision through light illumination. Application of optogenetics in neuroscience studies has created an increased need for the development of light sources and the instruments for light delivery. This paper presents a micro-lens-coupled LED neural stimulator which includes a backside reflector and a frontside microlens for light collection and collimation. The device structure has been optimized using optical simulation and the optimized device is able to increase the volume of excitable tissues by 70.4%. Device prototypes have been fabricated and integrated based on an optimization of the device structure. The measurement results show that the light power increases by 99% at an effective penetration depth of 5 000 [Formula: see text] by the fabricated device under various voltages of 2.4-3.2 V.
{"title":"A Flexible, Micro-Lens-Coupled LED Stimulator for Optical Neuromodulation.","authors":"Xiao-Peng Bi, Tian Xie, B. Fan, W. Khan, Yue Guo, Wen Li","doi":"10.1109/TBCAS.2016.2599406","DOIUrl":"https://doi.org/10.1109/TBCAS.2016.2599406","url":null,"abstract":"Optogenetics is a fast growing neuromodulation method, which can remotely manipulate the specific activities of genetically-targeted neural cells and associated biological behaviors with millisecond temporal precision through light illumination. Application of optogenetics in neuroscience studies has created an increased need for the development of light sources and the instruments for light delivery. This paper presents a micro-lens-coupled LED neural stimulator which includes a backside reflector and a frontside microlens for light collection and collimation. The device structure has been optimized using optical simulation and the optimized device is able to increase the volume of excitable tissues by 70.4%. Device prototypes have been fabricated and integrated based on an optimization of the device structure. The measurement results show that the light power increases by 99% at an effective penetration depth of 5 000 [Formula: see text] by the fabricated device under various voltages of 2.4-3.2 V.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"10 5 1","pages":"972-978"},"PeriodicalIF":5.1,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2599406","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62966258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.1109/TBCAS.2016.2614845
Elliot Greenwald, Ernest So, Qihong Wang, M. Mollazadeh, C. Maier, R. Etienne-Cummings, G. Cauwenberghs, N. Thakor
We present a bidirectional neural interface with a 4-channel biopotential analog-to-digital converter (bioADC) and a 4-channel current-mode stimulator in 180 nm CMOS. The bioADC directly transduces microvolt biopotentials into a digital representation without a voltage-amplification stage. Each bioADC channel comprises a continuous-time first-order ΔΣ modulator with a chopper-stabilized OTA input and current feedback, followed by a second-order comb-filter decimator with programmable oversampling ratio. Each stimulator channel contains two independent digital-to-analog converters for anodic and cathodic current generation. A shared calibration circuit matches the amplitude of the anodic and cathodic currents for charge balancing. Powered from a 1.5 V supply, the analog and digital circuits in each recording channel draw on average 1.54 μA and 2.13 μA of supply current, respectively. The bioADCs achieve an SNR of 58 dB and a SFDR of >70 dB, for better than 9-b ENOB. Intracranial EEG recordings from an anesthetized rat are shown and compared to simultaneous recordings from a commercial reference system to validate performance in-vivo. Additionally, we demonstrate bidirectional operation by recording cardiac modulation induced through vagus nerve stimulation, and closed-loop control of cardiac rhythm. The micropower operation, direct digital readout, and integration of electrical stimulation circuits make this interface ideally suited for closed-loop neuromodulation applications.
{"title":"A Bidirectional Neural Interface IC With Chopper Stabilized BioADC Array and Charge Balanced Stimulator","authors":"Elliot Greenwald, Ernest So, Qihong Wang, M. Mollazadeh, C. Maier, R. Etienne-Cummings, G. Cauwenberghs, N. Thakor","doi":"10.1109/TBCAS.2016.2614845","DOIUrl":"https://doi.org/10.1109/TBCAS.2016.2614845","url":null,"abstract":"We present a bidirectional neural interface with a 4-channel biopotential analog-to-digital converter (bioADC) and a 4-channel current-mode stimulator in 180 nm CMOS. The bioADC directly transduces microvolt biopotentials into a digital representation without a voltage-amplification stage. Each bioADC channel comprises a continuous-time first-order ΔΣ modulator with a chopper-stabilized OTA input and current feedback, followed by a second-order comb-filter decimator with programmable oversampling ratio. Each stimulator channel contains two independent digital-to-analog converters for anodic and cathodic current generation. A shared calibration circuit matches the amplitude of the anodic and cathodic currents for charge balancing. Powered from a 1.5 V supply, the analog and digital circuits in each recording channel draw on average 1.54 μA and 2.13 μA of supply current, respectively. The bioADCs achieve an SNR of 58 dB and a SFDR of >70 dB, for better than 9-b ENOB. Intracranial EEG recordings from an anesthetized rat are shown and compared to simultaneous recordings from a commercial reference system to validate performance in-vivo. Additionally, we demonstrate bidirectional operation by recording cardiac modulation induced through vagus nerve stimulation, and closed-loop control of cardiac rhythm. The micropower operation, direct digital readout, and integration of electrical stimulation circuits make this interface ideally suited for closed-loop neuromodulation applications.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"10 1","pages":"990-1002"},"PeriodicalIF":5.1,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2614845","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62966408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.1109/BioCAS.2016.7833713
Peng Li, Hanjun Jiang, Wendi Yang, Ming Liu, Xu Zhang, Xiaohui Hu, B. Pang, Zhaolin Yao, Hongda Chen
This paper proposes a low power and efficient QRS processor for real-time and continuous mobile ECG monitoring. The QRS detection algorithm is based on the harr wavelet transform. In order to reduce power consumption, an optimized FIR filter structure is proposed. To improve accuracy, R position modification (RPM) has been designed. Fabricated with the 0.18-μm N-well CMOS 1P6M technology, power consumption of this chip is only 410 nW in 1 V voltage supply, which is much lower than that of previous work. Validated by all 48 databases in the MIT-BIH arrhythmia database, sensitivity (Se) and positive prediction (Pr) are 99.60% and 99.77% respectively.
{"title":"A 410-nW efficient QRS processor for mobile ECG monitoring in 0.18-μm CMOS","authors":"Peng Li, Hanjun Jiang, Wendi Yang, Ming Liu, Xu Zhang, Xiaohui Hu, B. Pang, Zhaolin Yao, Hongda Chen","doi":"10.1109/BioCAS.2016.7833713","DOIUrl":"https://doi.org/10.1109/BioCAS.2016.7833713","url":null,"abstract":"This paper proposes a low power and efficient QRS processor for real-time and continuous mobile ECG monitoring. The QRS detection algorithm is based on the harr wavelet transform. In order to reduce power consumption, an optimized FIR filter structure is proposed. To improve accuracy, R position modification (RPM) has been designed. Fabricated with the 0.18-μm N-well CMOS 1P6M technology, power consumption of this chip is only 410 nW in 1 V voltage supply, which is much lower than that of previous work. Validated by all 48 databases in the MIT-BIH arrhythmia database, sensitivity (Se) and positive prediction (Pr) are 99.60% and 99.77% respectively.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"61 29 1","pages":"14-17"},"PeriodicalIF":5.1,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BioCAS.2016.7833713","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62152832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.1109/TBCAS.2016.2584239
C. Baj-Rossi, A. Cavallini, Enver G. Kilinc, Francesca Stradolini, T. Rezzonico Jost, M. Proietti, G. De Micheli, F. Grassi, C. Dehollain, S. Carrara
This paper presents the in-vivo tests on a Fully Implantable Multi-Panel Devices for Remote Monitoring of endogenous and exogenous analytes. To investigate issues on biocompatibility, three different covers have been designed, realized and tested in mice for 30 days. ATP and neutrophil concentrations have been measured, at the implant site after the device was explanted, to assess the level of biocompatibility of the device. Finally, fully working prototypes of the device were implanted in mice and tested. The implanted devices were used to detect variations in the physiological concentrations of glucose and paracetamol. Data trends on these analytes have been successfully acquired and transmitted to the external base station. Glucose and paracetamol (also named acetaminophen) have been proposed in this research as model molecules for applications to personalized and translational medicine.
{"title":"In-Vivo Validation of Fully Implantable Multi-Panel Devices for Remote Monitoring of Metabolism.","authors":"C. Baj-Rossi, A. Cavallini, Enver G. Kilinc, Francesca Stradolini, T. Rezzonico Jost, M. Proietti, G. De Micheli, F. Grassi, C. Dehollain, S. Carrara","doi":"10.1109/TBCAS.2016.2584239","DOIUrl":"https://doi.org/10.1109/TBCAS.2016.2584239","url":null,"abstract":"This paper presents the in-vivo tests on a Fully Implantable Multi-Panel Devices for Remote Monitoring of endogenous and exogenous analytes. To investigate issues on biocompatibility, three different covers have been designed, realized and tested in mice for 30 days. ATP and neutrophil concentrations have been measured, at the implant site after the device was explanted, to assess the level of biocompatibility of the device. Finally, fully working prototypes of the device were implanted in mice and tested. The implanted devices were used to detect variations in the physiological concentrations of glucose and paracetamol. Data trends on these analytes have been successfully acquired and transmitted to the external base station. Glucose and paracetamol (also named acetaminophen) have been proposed in this research as model molecules for applications to personalized and translational medicine.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"1 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2584239","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62965785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.1109/TBCAS.2016.2580156
Mingquan Yuan, Keng-ku Liu, S. Singamaneni, S. Chakrabartty
This paper extends our previous work on silver-enhancement based self-assembling structures for designing reliable, self-powered biosensors with forward error correcting (FEC) capability. At the core of the proposed approach is the integration of paper-based microfluidics with quick response (QR) codes that can be optically scanned using a smart-phone. The scanned information is first decoded to obtain the location of a web-server which further processes the self-assembled QR image to determine the concentration of target analytes. The integration substrate for the proposed FEC biosensor is polyethylene and the patterning of the QR code on the substrate has been achieved using a combination of low-cost ink-jet printing and a regular ballpoint dispensing pen. A paper-based microfluidics channel has been integrated underneath the substrate for acquiring, mixing and flowing the sample to areas on the substrate where different parts of the code can self-assemble in presence of immobilized gold nanorods. In this paper we demonstrate the proof-of-concept detection using prototypes of QR encoded FEC biosensors.
{"title":"Self-Powered Forward Error-Correcting Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled Quick Response Codes.","authors":"Mingquan Yuan, Keng-ku Liu, S. Singamaneni, S. Chakrabartty","doi":"10.1109/TBCAS.2016.2580156","DOIUrl":"https://doi.org/10.1109/TBCAS.2016.2580156","url":null,"abstract":"This paper extends our previous work on silver-enhancement based self-assembling structures for designing reliable, self-powered biosensors with forward error correcting (FEC) capability. At the core of the proposed approach is the integration of paper-based microfluidics with quick response (QR) codes that can be optically scanned using a smart-phone. The scanned information is first decoded to obtain the location of a web-server which further processes the self-assembled QR image to determine the concentration of target analytes. The integration substrate for the proposed FEC biosensor is polyethylene and the patterning of the QR code on the substrate has been achieved using a combination of low-cost ink-jet printing and a regular ballpoint dispensing pen. A paper-based microfluidics channel has been integrated underneath the substrate for acquiring, mixing and flowing the sample to areas on the substrate where different parts of the code can self-assemble in presence of immobilized gold nanorods. In this paper we demonstrate the proof-of-concept detection using prototypes of QR encoded FEC biosensors.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"10 5 1","pages":"963-971"},"PeriodicalIF":5.1,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2580156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62966073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.1109/TBCAS.2016.2612581
Shanshan Dai, Rukshan T. Perera, Zi Yang, J. Rosenstein
An integrated current measurement system with ultra wide dynamic range is presented and fabricated in a 180-nm CMOS technology. Its dual-mode design provides concurrent voltage and frequency outputs, without requiring an external clock source. An integrator-differentiator core provides a voltage output √ with a noise floor of 11.6 fA/ (Hz) and a -3 dB cutoff frequency of 1.4 MHz. It is merged with an asynchronous current-to-frequency converter, which generates an output frequency linearly proportional to the input current. Together, the voltage and frequency outputs yield a current measurement range of 155 dB, spanning from 204 fA (100 Hz) or 1.25 pA (10 kHz) to 11.6 μA. The proposed architecture's low noise, wide bandwidth, and wide dynamic range make it ideal for measurements of highly nonlinear electrochemical and electrophysiological systems.
提出并制作了一种采用180nm CMOS工艺的超宽动态范围集成电流测量系统。它的双模设计提供并发电压和频率输出,而不需要外部时钟源。积分器核心提供电压输出√,本底噪声为11.6 fA/ (Hz),截止频率为-3 dB,为1.4 MHz。它与异步电流-频率转换器合并,产生与输入电流成线性比例的输出频率。电压和频率输出产生155 dB的电流测量范围,从204 fA (100 Hz)或1.25 pA (10 kHz)到11.6 μA。该架构的低噪声、宽带宽和宽动态范围使其成为高度非线性电化学和电生理系统测量的理想选择。
{"title":"A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing","authors":"Shanshan Dai, Rukshan T. Perera, Zi Yang, J. Rosenstein","doi":"10.1109/TBCAS.2016.2612581","DOIUrl":"https://doi.org/10.1109/TBCAS.2016.2612581","url":null,"abstract":"An integrated current measurement system with ultra wide dynamic range is presented and fabricated in a 180-nm CMOS technology. Its dual-mode design provides concurrent voltage and frequency outputs, without requiring an external clock source. An integrator-differentiator core provides a voltage output √ with a noise floor of 11.6 fA/ (Hz) and a -3 dB cutoff frequency of 1.4 MHz. It is merged with an asynchronous current-to-frequency converter, which generates an output frequency linearly proportional to the input current. Together, the voltage and frequency outputs yield a current measurement range of 155 dB, spanning from 204 fA (100 Hz) or 1.25 pA (10 kHz) to 11.6 μA. The proposed architecture's low noise, wide bandwidth, and wide dynamic range make it ideal for measurements of highly nonlinear electrochemical and electrophysiological systems.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"10 1","pages":"935-944"},"PeriodicalIF":5.1,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2612581","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62966371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01Epub Date: 2016-09-16DOI: 10.1109/TBCAS.2016.2577705
S Abdollah Mirbozorgi, Yaoyao Jia, Daniel Canales, Maysam Ghovanloo
A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency [Formula: see text], they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window [Formula: see text] by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ∼7 cm height, plus stability against angular mis-alignments of up to 80°.
{"title":"A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control.","authors":"S Abdollah Mirbozorgi, Yaoyao Jia, Daniel Canales, Maysam Ghovanloo","doi":"10.1109/TBCAS.2016.2577705","DOIUrl":"10.1109/TBCAS.2016.2577705","url":null,"abstract":"<p><p>A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency [Formula: see text], they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window [Formula: see text] by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ∼7 cm height, plus stability against angular mis-alignments of up to 80°.</p>","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"10 1","pages":"979-989"},"PeriodicalIF":5.1,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62966015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}