Paulo S de Melo, João Parente, Ingrid Rebello-Sanchez, Anna Marduy, Anna Carolyna Gianlorenco, Chi Kyung Kim, Hyuk Choi, Jae-Jun Song, Felipe Fregni
{"title":"Understanding the Neuroplastic Effects of Auricular Vagus Nerve Stimulation in Animal Models of Stroke: A Systematic Review and Meta-Analysis.","authors":"Paulo S de Melo, João Parente, Ingrid Rebello-Sanchez, Anna Marduy, Anna Carolyna Gianlorenco, Chi Kyung Kim, Hyuk Choi, Jae-Jun Song, Felipe Fregni","doi":"10.1177/15459683231177595","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transauricular vagus nerve stimulation (taVNS) is being studied as a feasible intervention for stroke, but the mechanisms by which this non-invasive technique acts in the cortex are still broadly unknown.</p><p><strong>Objectives: </strong>This study aimed to systematically review the current pre-clinical evidence in the auricular vagus nerve stimulation (aVNS) neuroplastic effects in stroke.</p><p><strong>Methods: </strong>We searched, in December of 2022, in Medline, Cochrane, Embase, and Lilacs databases. The authors executed the extraction of the data on Excel. The risk of bias was evaluated by adapted Cochrane Collaboration's tool for animal studies (SYRCLES's RoB tool).</p><p><strong>Results: </strong>A total of 8 studies published between 2015 and 2022 were included in this review, including 391 animal models. In general, aVNS demonstrated a reduction in neurological deficits (SMD = -1.97, 95% CI -2.57 to -1.36, <i>I</i><sup>2</sup> = 44%), in time to perform the adhesive removal test (SMD = -2.26, 95% CI -4.45 to -0.08, <i>I</i><sup>2</sup> = 81%), and infarct size (SMD = -1.51, 95% CI -2.42 to -0.60, <i>I</i><sup>2</sup> = 58%). Regarding the neuroplasticity markers, aVNS showed to increase microcapillary density, CD31 proliferation, and BDNF protein levels and RNA expression.</p><p><strong>Conclusions: </strong>The studies analyzed show a trend of results that demonstrate a significant effect of the auricular vagal nerve stimulation in stroke animal models. Although the aggregated results show high heterogeneity and high risk of bias. More studies are needed to create solid conclusions.</p>","PeriodicalId":56104,"journal":{"name":"Neurorehabilitation and Neural Repair","volume":"37 8","pages":"564-576"},"PeriodicalIF":3.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurorehabilitation and Neural Repair","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15459683231177595","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Transauricular vagus nerve stimulation (taVNS) is being studied as a feasible intervention for stroke, but the mechanisms by which this non-invasive technique acts in the cortex are still broadly unknown.
Objectives: This study aimed to systematically review the current pre-clinical evidence in the auricular vagus nerve stimulation (aVNS) neuroplastic effects in stroke.
Methods: We searched, in December of 2022, in Medline, Cochrane, Embase, and Lilacs databases. The authors executed the extraction of the data on Excel. The risk of bias was evaluated by adapted Cochrane Collaboration's tool for animal studies (SYRCLES's RoB tool).
Results: A total of 8 studies published between 2015 and 2022 were included in this review, including 391 animal models. In general, aVNS demonstrated a reduction in neurological deficits (SMD = -1.97, 95% CI -2.57 to -1.36, I2 = 44%), in time to perform the adhesive removal test (SMD = -2.26, 95% CI -4.45 to -0.08, I2 = 81%), and infarct size (SMD = -1.51, 95% CI -2.42 to -0.60, I2 = 58%). Regarding the neuroplasticity markers, aVNS showed to increase microcapillary density, CD31 proliferation, and BDNF protein levels and RNA expression.
Conclusions: The studies analyzed show a trend of results that demonstrate a significant effect of the auricular vagal nerve stimulation in stroke animal models. Although the aggregated results show high heterogeneity and high risk of bias. More studies are needed to create solid conclusions.
期刊介绍:
Neurorehabilitation & Neural Repair (NNR) offers innovative and reliable reports relevant to functional recovery from neural injury and long term neurologic care. The journal''s unique focus is evidence-based basic and clinical practice and research. NNR deals with the management and fundamental mechanisms of functional recovery from conditions such as stroke, multiple sclerosis, Alzheimer''s disease, brain and spinal cord injuries, and peripheral nerve injuries.