Hemodynamics of the Frontopolar and Dorsolateral Pre-Frontal Cortex in People with Multiple Sclerosis During Walking, Cognitive Subtraction, and Cognitive-Motor Dual-Task.
{"title":"Hemodynamics of the Frontopolar and Dorsolateral Pre-Frontal Cortex in People with Multiple Sclerosis During Walking, Cognitive Subtraction, and Cognitive-Motor Dual-Task.","authors":"Felipe Balistieri Santinelli,Renee Veldkamp,Rodrigo Vitório,Daphne Kos,Maxine Vos,Ruth Nijssen,John DeLuca,Cintia Ramari,Peter Feys","doi":"10.1177/15459683241279066","DOIUrl":null,"url":null,"abstract":"INTRODUCTION\r\nHigher cortical activity has been observed in people with multiple sclerosis (pwMS) during walking and dual-tasking. However, further studies in overground walking and considering pre-frontal cortex (PFC) sub-areas are necessary.\r\n\r\nOBJECTIVES\r\nTo investigate PFC activity during a cognitive-motor dual-task (DT) and its single component tasks, in combination with behavioral outcomes in pwMS.\r\n\r\nMETHODS\r\nFifteen pwMS (EDSS 3.5 [2-5.5], 42 ± 11 years) and 16 healthy controls (HC, 45.2 ± 13.2 years) performed 3 conditions: single motor-walking (SWT), single cognitive - subtracting sevens (SCT), and a DT. Meters walked and the number of correct answers were obtained from which, respectively, the motor (mDTC) and cognitive (cDTC) DT costs were calculated. A functional Near-Infrared Spectroscopy covering the frontopolar and dorsolateral PFC (DLPFC) areas was used to concentration of relative oxyhemoglobin (ΔHbO2) and deoxyhemoglobin (ΔHHb) in the PFC. A repeated 2-way ANOVA (group × conditions) was used to compare ΔHbO2/ΔHHb and behavioral outcomes.\r\n\r\nRESULTS\r\nPwMS walked shorter distances (P < .002) and answered fewer correct numbers (P < .03) than HC in all conditions, while cDTC and mDTC were similar between groups. PwMS presented higher ΔHbO2 in the frontopolar area than HC in the SWT (P < .001). HC increased ΔHbO2 in frontopolar during the SCT (P < .029) and DT (P < .037) compared with the SWT.\r\n\r\nCONCLUSION\r\nHigher frontopolar activity in pwMS compared to HC in the SWT suggests reduced gait automaticity. Furthermore, it seems that only HC increased neural activity in the frontopolar in the SCT and DT, which might suggest a limit of cognitive resources to respond to DT in pwMS.","PeriodicalId":56104,"journal":{"name":"Neurorehabilitation and Neural Repair","volume":"88 1","pages":"15459683241279066"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurorehabilitation and Neural Repair","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15459683241279066","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
INTRODUCTION
Higher cortical activity has been observed in people with multiple sclerosis (pwMS) during walking and dual-tasking. However, further studies in overground walking and considering pre-frontal cortex (PFC) sub-areas are necessary.
OBJECTIVES
To investigate PFC activity during a cognitive-motor dual-task (DT) and its single component tasks, in combination with behavioral outcomes in pwMS.
METHODS
Fifteen pwMS (EDSS 3.5 [2-5.5], 42 ± 11 years) and 16 healthy controls (HC, 45.2 ± 13.2 years) performed 3 conditions: single motor-walking (SWT), single cognitive - subtracting sevens (SCT), and a DT. Meters walked and the number of correct answers were obtained from which, respectively, the motor (mDTC) and cognitive (cDTC) DT costs were calculated. A functional Near-Infrared Spectroscopy covering the frontopolar and dorsolateral PFC (DLPFC) areas was used to concentration of relative oxyhemoglobin (ΔHbO2) and deoxyhemoglobin (ΔHHb) in the PFC. A repeated 2-way ANOVA (group × conditions) was used to compare ΔHbO2/ΔHHb and behavioral outcomes.
RESULTS
PwMS walked shorter distances (P < .002) and answered fewer correct numbers (P < .03) than HC in all conditions, while cDTC and mDTC were similar between groups. PwMS presented higher ΔHbO2 in the frontopolar area than HC in the SWT (P < .001). HC increased ΔHbO2 in frontopolar during the SCT (P < .029) and DT (P < .037) compared with the SWT.
CONCLUSION
Higher frontopolar activity in pwMS compared to HC in the SWT suggests reduced gait automaticity. Furthermore, it seems that only HC increased neural activity in the frontopolar in the SCT and DT, which might suggest a limit of cognitive resources to respond to DT in pwMS.
期刊介绍:
Neurorehabilitation & Neural Repair (NNR) offers innovative and reliable reports relevant to functional recovery from neural injury and long term neurologic care. The journal''s unique focus is evidence-based basic and clinical practice and research. NNR deals with the management and fundamental mechanisms of functional recovery from conditions such as stroke, multiple sclerosis, Alzheimer''s disease, brain and spinal cord injuries, and peripheral nerve injuries.