{"title":"In vitro continuous protein evolution empowered by machine learning and automation.","authors":"Tianhao Yu, Aashutosh Girish Boob, Nilmani Singh, Yufeng Su, Huimin Zhao","doi":"10.1016/j.cels.2023.04.006","DOIUrl":null,"url":null,"abstract":"<p><p>Directed evolution has become one of the most successful and powerful tools for protein engineering. However, the efforts required for designing, constructing, and screening a large library of variants can be laborious, time-consuming, and costly. With the recent advent of machine learning (ML) in the directed evolution of proteins, researchers can now evaluate variants in silico and guide a more efficient directed evolution campaign. Furthermore, recent advancements in laboratory automation have enabled the rapid execution of long, complex experiments for high-throughput data acquisition in both industrial and academic settings, thus providing the means to collect a large quantity of data required to develop ML models for protein engineering. In this perspective, we propose a closed-loop in vitro continuous protein evolution framework that leverages the best of both worlds, ML and automation, and provide a brief overview of the recent developments in the field.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 8","pages":"633-644"},"PeriodicalIF":9.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.04.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Directed evolution has become one of the most successful and powerful tools for protein engineering. However, the efforts required for designing, constructing, and screening a large library of variants can be laborious, time-consuming, and costly. With the recent advent of machine learning (ML) in the directed evolution of proteins, researchers can now evaluate variants in silico and guide a more efficient directed evolution campaign. Furthermore, recent advancements in laboratory automation have enabled the rapid execution of long, complex experiments for high-throughput data acquisition in both industrial and academic settings, thus providing the means to collect a large quantity of data required to develop ML models for protein engineering. In this perspective, we propose a closed-loop in vitro continuous protein evolution framework that leverages the best of both worlds, ML and automation, and provide a brief overview of the recent developments in the field.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.