{"title":"Lattice modulation strategies for 2D material assisted epitaxial growth","authors":"Qi Chen, Kailai Yang, Meng Liang, Junjie Kang, Xiaoyan Yi, Junxi Wang, Jinmin Li, Zhiqiang Liu","doi":"10.1186/s40580-023-00388-0","DOIUrl":null,"url":null,"abstract":"<div><p>As an emerging single crystals growth technique, the 2D-material-assisted epitaxy shows excellent advantages in flexible and transferable structure fabrication, dissimilar materials integration, and matter assembly, which offers opportunities for novel optoelectronics and electronics development and opens a pathway for the next-generation integrated system fabrication. Studying and understanding the lattice modulation mechanism in 2D-material-assisted epitaxy could greatly benefit its practical application and further development. In this review, we overview the tremendous experimental and theoretical findings in varied 2D-material-assisted epitaxy. The lattice guidance mechanism and corresponding epitaxial relationship construction strategy in remote epitaxy, van der Waals epitaxy, and quasi van der Waals epitaxy are discussed, respectively. Besides, the possible application scenarios and future development directions of 2D-material-assisted epitaxy are also given. We believe the discussions and perspectives exhibited here could help to provide insight into the essence of the 2D-material-assisted epitaxy and motivate novel structure design and offer solutions to heterogeneous integration via the 2D-material-assisted epitaxy method.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-023-00388-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As an emerging single crystals growth technique, the 2D-material-assisted epitaxy shows excellent advantages in flexible and transferable structure fabrication, dissimilar materials integration, and matter assembly, which offers opportunities for novel optoelectronics and electronics development and opens a pathway for the next-generation integrated system fabrication. Studying and understanding the lattice modulation mechanism in 2D-material-assisted epitaxy could greatly benefit its practical application and further development. In this review, we overview the tremendous experimental and theoretical findings in varied 2D-material-assisted epitaxy. The lattice guidance mechanism and corresponding epitaxial relationship construction strategy in remote epitaxy, van der Waals epitaxy, and quasi van der Waals epitaxy are discussed, respectively. Besides, the possible application scenarios and future development directions of 2D-material-assisted epitaxy are also given. We believe the discussions and perspectives exhibited here could help to provide insight into the essence of the 2D-material-assisted epitaxy and motivate novel structure design and offer solutions to heterogeneous integration via the 2D-material-assisted epitaxy method.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.