首页 > 最新文献

Nano Convergence最新文献

英文 中文
Recent advances in CMOS-compatible synthesis and integration of 2D materials
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-15 DOI: 10.1186/s40580-025-00478-1
Ajit Kumar Katiyar, Jonggyu Choi, Jong-Hyun Ahn

The upcoming generation of functional electronics in the era of artificial intelligence, and IoT requires extensive data storage and processing, necessitating further device miniaturization. Conventional Si CMOS technology is struggling to enhance integration density beyond a certain limit to uphold Moore’s law, primarily due to performance degradation at smaller dimensions caused by various physical effects, including surface scattering, quantum tunneling, and other short-channel effects. The two-dimensional materials have emerged as highly promising alternatives, which exhibit excellent electrical and mechanical properties at atomically thin thicknesses and show exceptional potential for future CMOS technology. This review article presents the chronological progress made in the development of two-dimensional materials-based CMOS devices with comprehensively discussing the advancements made in material production, device development, associated challenges, and the strategies to address these issues. The future prospects for the use of two-dimensional materials in functional CMOS circuitry are outlooked, highlighting key opportunities and challenges toward industrial adaptation.

Graphical Abstract

人工智能和物联网时代即将到来的新一代功能电子产品需要大量的数据存储和处理,这就要求设备进一步微型化。传统的硅 CMOS 技术难以超越一定的极限来提高集成密度,以坚持摩尔定律,这主要是由于各种物理效应(包括表面散射、量子隧道和其他短通道效应)导致器件在尺寸更小的情况下性能下降。二维材料已成为极具前景的替代材料,它们在原子厚度极薄的情况下表现出优异的电气和机械性能,在未来的 CMOS 技术中显示出非凡的潜力。这篇综述文章按时间顺序介绍了基于二维材料的 CMOS 器件的开发进展,全面讨论了在材料生产、器件开发、相关挑战以及解决这些问题的策略等方面取得的进展。文章展望了在功能 CMOS 电路中使用二维材料的未来前景,强调了实现工业适应性的关键机遇和挑战。
{"title":"Recent advances in CMOS-compatible synthesis and integration of 2D materials","authors":"Ajit Kumar Katiyar,&nbsp;Jonggyu Choi,&nbsp;Jong-Hyun Ahn","doi":"10.1186/s40580-025-00478-1","DOIUrl":"10.1186/s40580-025-00478-1","url":null,"abstract":"<div><p>The upcoming generation of functional electronics in the era of artificial intelligence, and IoT requires extensive data storage and processing, necessitating further device miniaturization. Conventional Si CMOS technology is struggling to enhance integration density beyond a certain limit to uphold Moore’s law, primarily due to performance degradation at smaller dimensions caused by various physical effects, including surface scattering, quantum tunneling, and other short-channel effects. The two-dimensional materials have emerged as highly promising alternatives, which exhibit excellent electrical and mechanical properties at atomically thin thicknesses and show exceptional potential for future CMOS technology. This review article presents the chronological progress made in the development of two-dimensional materials-based CMOS devices with comprehensively discussing the advancements made in material production, device development, associated challenges, and the strategies to address these issues. The future prospects for the use of two-dimensional materials in functional CMOS circuitry are outlooked, highlighting key opportunities and challenges toward industrial adaptation.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00478-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Freestanding VO2 membranes on epidermal nanomesh for ultra-sensitive correlated breathable sensors
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-07 DOI: 10.1186/s40580-025-00476-3
Dongha Kim, Dongju Lee, Jiseok Park, Jihoon Bae, Aiping Chen, Judith L. MacManus-Driscoll, Sungwon Lee, Shinbuhm Lee

The interest in highly sensitive sensors is rapidly increasing for detecting very tiny signals for Internet of Things devices. Here, we achieve ultra-sensitive correlated breathable sensors based on freestanding VO2 membranes. We fabricate the membranes by growing VO2 films onto sacrificial Sr3Al2O6 layer grown on SrTiO3, selectively dissolving the Sr3Al2O6 in water, and then rendering freestanding VO2 membrane on nanomesh. The nanomeshes are extremely flexible, sweat permeable, and readily skin-adhesive. The resistance of the VO2 membranes is reversibly tuned by human’s tiny mechanical stimuli and breath stimuli. The stimuli modulate the Peierls dimerization of one-dimensional V−V chains in the VO2 lattice which concomitantly controls the electron correlation and hence resistivity. Since our breathable sensors operate based on quantum-mechanical correlation effects, their sensitivity is 1−2 orders of magnitude higher than conventional tactile and respiratory sensors based on other materials. Thus, the freestanding membranes of correlated oxides on epidermal nanomeshes are multifunctional platforms for developing ultra-sensitive correlated breathable sensors.

Graphical Abstract

{"title":"Freestanding VO2 membranes on epidermal nanomesh for ultra-sensitive correlated breathable sensors","authors":"Dongha Kim,&nbsp;Dongju Lee,&nbsp;Jiseok Park,&nbsp;Jihoon Bae,&nbsp;Aiping Chen,&nbsp;Judith L. MacManus-Driscoll,&nbsp;Sungwon Lee,&nbsp;Shinbuhm Lee","doi":"10.1186/s40580-025-00476-3","DOIUrl":"10.1186/s40580-025-00476-3","url":null,"abstract":"<div><p>The interest in highly sensitive sensors is rapidly increasing for detecting very tiny signals for Internet of Things devices. Here, we achieve ultra-sensitive correlated breathable sensors based on freestanding VO<sub>2</sub> membranes. We fabricate the membranes by growing VO<sub>2</sub> films onto sacrificial Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> layer grown on SrTiO<sub>3</sub>, selectively dissolving the Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> in water, and then rendering freestanding VO<sub>2</sub> membrane on nanomesh. The nanomeshes are extremely flexible, sweat permeable, and readily skin-adhesive. The resistance of the VO<sub>2</sub> membranes is reversibly tuned by human’s tiny mechanical stimuli and breath stimuli. The stimuli modulate the Peierls dimerization of one-dimensional V−V chains in the VO<sub>2</sub> lattice which concomitantly controls the electron correlation and hence resistivity. Since our breathable sensors operate based on quantum-mechanical correlation effects, their sensitivity is 1−2 orders of magnitude higher than conventional tactile and respiratory sensors based on other materials. Thus, the freestanding membranes of correlated oxides on epidermal nanomeshes are multifunctional platforms for developing ultra-sensitive correlated breathable sensors.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00476-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current status of developed electrocatalysts for water splitting technologies: from experimental to industrial perspective
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-06 DOI: 10.1186/s40580-024-00468-9
Duy Thanh Tran, Phan Khanh Linh Tran, Deepanshu Malhotra, Thanh Hai Nguyen, Tran Thien An Nguyen, Nguyen Tram Anh Duong, Nam Hoon Kim, Joong Hee Lee

The conversion of electricity into hydrogen (H2) gas through electrochemical water splitting using efficient electrocatalysts has been one of the most important future technologies to create vast amounts of clean and renewable energy. Low-temperature electrolyzer systems, such as proton exchange membrane water electrolyzers, alkaline water electrolyzers, and anion exchange membrane water electrolyzers are at the forefront of current technologies. Their performance, however, generally depends on electricity costs and system efficiency, which can be significantly improved by developing high-performance electrocatalysts to enhance the kinetics of both the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction. Despite numerous active research efforts in catalyst development, the performance of water electrolysis remains insufficient for commercialization. Ongoing research into innovative electrocatalysts and an understanding of the catalytic mechanisms are critical to enhancing their activity and stability for electrolyzers. This is still a focus at academic institutes/universities and industrial R&D centers. Herein, we provide an overview of the current state and future directions of electrocatalysts and water electrolyzers for electrochemical H2 production. Additionally, we describe in detail the technological framework of electrocatalysts and water electrolyzers for H2 production as utilized by relevant global companies.

{"title":"Current status of developed electrocatalysts for water splitting technologies: from experimental to industrial perspective","authors":"Duy Thanh Tran,&nbsp;Phan Khanh Linh Tran,&nbsp;Deepanshu Malhotra,&nbsp;Thanh Hai Nguyen,&nbsp;Tran Thien An Nguyen,&nbsp;Nguyen Tram Anh Duong,&nbsp;Nam Hoon Kim,&nbsp;Joong Hee Lee","doi":"10.1186/s40580-024-00468-9","DOIUrl":"10.1186/s40580-024-00468-9","url":null,"abstract":"<p>The conversion of electricity into hydrogen (H<sub>2</sub>) gas through electrochemical water splitting using efficient electrocatalysts has been one of the most important future technologies to create vast amounts of clean and renewable energy. Low-temperature electrolyzer systems, such as proton exchange membrane water electrolyzers, alkaline water electrolyzers, and anion exchange membrane water electrolyzers are at the forefront of current technologies. Their performance, however, generally depends on electricity costs and system efficiency, which can be significantly improved by developing high-performance electrocatalysts to enhance the kinetics of both the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction. Despite numerous active research efforts in catalyst development, the performance of water electrolysis remains insufficient for commercialization. Ongoing research into innovative electrocatalysts and an understanding of the catalytic mechanisms are critical to enhancing their activity and stability for electrolyzers. This is still a focus at academic institutes/universities and industrial R&amp;D centers. Herein, we provide an overview of the current state and future directions of electrocatalysts and water electrolyzers for electrochemical H<sub>2</sub> production. Additionally, we describe in detail the technological framework of electrocatalysts and water electrolyzers for H<sub>2</sub> production as utilized by relevant global companies.</p>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00468-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lung-homing nanoliposomes for early intervention in NETosis and inflammation during acute lung injury
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-03 DOI: 10.1186/s40580-025-00475-4
Jungbum Kim, Donghyuk Seo, So-Yeol Yoo, Hye-Jin Lee, Jisun Kim, Ji Eun Yeom, Jae-Young Lee, Wooram Park, Kyung Soo Hong, Wonhwa Lee

Acute lung injury (ALI) is characterized by severe inflammation in lung tissue, excessive immune response and impaired lung function. In hospitalized high-risk patients and cases of secondary infection due to surgical contamination, it can lead to higher mortality rates and require immediate intervention. Currently, clinical treatments are limited in symptomatic therapy as mechanical ventilation and corticosteroids, having insufficient efficacy in mitigating the cause of progression to severe illness. Here we report a pulmonary targeting lung-homing nanoliposome (LHN) designed to attenuate excessive Neutrophil Extracellular Trap formation (NETosis) through sivelestat and DNase-1, coupled with an anti-inflammatory effect mediated by 25-hydroxycholesterol (25-HC), offering a promising intervention for the acute phase of ALI. Through intratracheal delivery, we intend prompt and constant action within the lungs to effectively prevent excessive NETosis. Isolated neutrophils from blood samples of severe ARDS patients demonstrated significant anti-NETosis effects, as well as reduced proinflammatory cytokine secretion. Furthermore, in a murine model of LPS-induced ALI, we confirmed improvements in lung histopathology, and early respiratory function. Also, attenuation of systemic inflammatory response syndrome (SIRS), with notable reductions in NETosis and neutrophil trafficking was investigated. This presents a targeted therapeutic approach that can be applied in early stages of high-risk patients to prevent severe pulmonary disease progression.

{"title":"Lung-homing nanoliposomes for early intervention in NETosis and inflammation during acute lung injury","authors":"Jungbum Kim,&nbsp;Donghyuk Seo,&nbsp;So-Yeol Yoo,&nbsp;Hye-Jin Lee,&nbsp;Jisun Kim,&nbsp;Ji Eun Yeom,&nbsp;Jae-Young Lee,&nbsp;Wooram Park,&nbsp;Kyung Soo Hong,&nbsp;Wonhwa Lee","doi":"10.1186/s40580-025-00475-4","DOIUrl":"10.1186/s40580-025-00475-4","url":null,"abstract":"<div><p>Acute lung injury (ALI) is characterized by severe inflammation in lung tissue, excessive immune response and impaired lung function. In hospitalized high-risk patients and cases of secondary infection due to surgical contamination, it can lead to higher mortality rates and require immediate intervention. Currently, clinical treatments are limited in symptomatic therapy as mechanical ventilation and corticosteroids, having insufficient efficacy in mitigating the cause of progression to severe illness. Here we report a pulmonary targeting lung-homing nanoliposome (LHN) designed to attenuate excessive Neutrophil Extracellular Trap formation (NETosis) through sivelestat and DNase-1, coupled with an anti-inflammatory effect mediated by 25-hydroxycholesterol (25-HC), offering a promising intervention for the acute phase of ALI. Through intratracheal delivery, we intend prompt and constant action within the lungs to effectively prevent excessive NETosis. Isolated neutrophils from blood samples of severe ARDS patients demonstrated significant anti-NETosis effects, as well as reduced proinflammatory cytokine secretion. Furthermore, in a murine model of LPS-induced ALI, we confirmed improvements in lung histopathology, and early respiratory function. Also, attenuation of systemic inflammatory response syndrome (SIRS), with notable reductions in NETosis and neutrophil trafficking was investigated. This presents a targeted therapeutic approach that can be applied in early stages of high-risk patients to prevent severe pulmonary disease progression.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00475-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-30 DOI: 10.1186/s40580-025-00474-5
Yongsu Lee, Hae-Won Lee, Su Jin Kim, Jeong Min Park, Byoung Hun Lee, Chang Goo Kang

Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of Al2O3-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor. These results highlight the potential of passivated metal-oxide thin films for developing reliable radiation-hardened semiconductor devices that can be used in harsh space environments. In addition, the relationship between low-frequency noise and defects due to oxygen vacancies was revealed, which can be utilized to improve device reliability.

{"title":"Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer","authors":"Yongsu Lee,&nbsp;Hae-Won Lee,&nbsp;Su Jin Kim,&nbsp;Jeong Min Park,&nbsp;Byoung Hun Lee,&nbsp;Chang Goo Kang","doi":"10.1186/s40580-025-00474-5","DOIUrl":"10.1186/s40580-025-00474-5","url":null,"abstract":"<div><p>Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of Al<sub>2</sub>O<sub>3</sub>-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor. These results highlight the potential of passivated metal-oxide thin films for developing reliable radiation-hardened semiconductor devices that can be used in harsh space environments. In addition, the relationship between low-frequency noise and defects due to oxygen vacancies was revealed, which can be utilized to improve device reliability.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Engineering extracellular vesicles for ROS scavenging and tissue regeneration
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-27 DOI: 10.1186/s40580-024-00470-1
Ahmed Abdal Dayem, Ellie Yan, Minjae Do, Yoojung Kim, Yeongseo Lee, Ssang-Goo Cho, Deok-Ho Kim
{"title":"Correction: Engineering extracellular vesicles for ROS scavenging and tissue regeneration","authors":"Ahmed Abdal Dayem,&nbsp;Ellie Yan,&nbsp;Minjae Do,&nbsp;Yoojung Kim,&nbsp;Yeongseo Lee,&nbsp;Ssang-Goo Cho,&nbsp;Deok-Ho Kim","doi":"10.1186/s40580-024-00470-1","DOIUrl":"10.1186/s40580-024-00470-1","url":null,"abstract":"","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Interfacial charge transfer on hierarchical synergistic shell wall of MXene/MoS2 on CdS nanospheres: heterostructure integrity for visible light responsive photocatalytic H2 evolution
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-27 DOI: 10.1186/s40580-024-00469-8
Kugalur Shanmugam Ranjith, Ali Mohammadi, Ganji Seeta Rama Raju, Yun Suk Huh, Young-Kyu Han
{"title":"Correction: Interfacial charge transfer on hierarchical synergistic shell wall of MXene/MoS2 on CdS nanospheres: heterostructure integrity for visible light responsive photocatalytic H2 evolution","authors":"Kugalur Shanmugam Ranjith,&nbsp;Ali Mohammadi,&nbsp;Ganji Seeta Rama Raju,&nbsp;Yun Suk Huh,&nbsp;Young-Kyu Han","doi":"10.1186/s40580-024-00469-8","DOIUrl":"10.1186/s40580-024-00469-8","url":null,"abstract":"","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the frontiers of electrocatalysis: advanced theoretical methods for water splitting
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-24 DOI: 10.1186/s40580-024-00467-w
Seong Chan Cho, Jun Ho Seok, Hung Ngo Manh, Jae Hun Seol, Chi Ho Lee, Sang Uck Lee

Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER. We begin by exploring DFT-based approaches for evaluating catalytic activity under both acidic and alkaline conditions. The review then shifts to a material-oriented perspective, showcasing key catalyst materials and the theoretical strategies employed to enhance their performance. In addition, we discuss scaling relationships that exist between binding energies and electronic structures through the use of charge-density analysis and d-band theory. Advanced concepts, such as the effects of adsorbate coverage, solvation, and applied potential on catalytic behavior, are also discussed. We finally focus on integrating machine learning (ML) with DFT to enable high-throughput screening and accelerate the discovery of novel water-splitting catalysts. This comprehensive review underscores the pivotal role that DFT plays in advancing electrocatalyst design and highlights its potential for shaping the future of sustainable hydrogen production.

Graphical Abstract

{"title":"Expanding the frontiers of electrocatalysis: advanced theoretical methods for water splitting","authors":"Seong Chan Cho,&nbsp;Jun Ho Seok,&nbsp;Hung Ngo Manh,&nbsp;Jae Hun Seol,&nbsp;Chi Ho Lee,&nbsp;Sang Uck Lee","doi":"10.1186/s40580-024-00467-w","DOIUrl":"10.1186/s40580-024-00467-w","url":null,"abstract":"<div><p>Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER. We begin by exploring DFT-based approaches for evaluating catalytic activity under both acidic and alkaline conditions. The review then shifts to a material-oriented perspective, showcasing key catalyst materials and the theoretical strategies employed to enhance their performance. In addition, we discuss scaling relationships that exist between binding energies and electronic structures through the use of charge-density analysis and <i>d</i>-band theory. Advanced concepts, such as the effects of adsorbate coverage, solvation, and applied potential on catalytic behavior, are also discussed. We finally focus on integrating machine learning (ML) with DFT to enable high-throughput screening and accelerate the discovery of novel water-splitting catalysts. This comprehensive review underscores the pivotal role that DFT plays in advancing electrocatalyst design and highlights its potential for shaping the future of sustainable hydrogen production.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferroelectric capacitive memories: devices, arrays, and applications 铁电容性存储器:器件、阵列和应用
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-22 DOI: 10.1186/s40580-024-00463-0
Zuopu Zhou, Leming Jiao, Zijie Zheng, Yue Chen, Kaizhen Han, Yuye Kang, Dong Zhang, Xiaolin Wang, Qiwen Kong, Chen Sun, Jiawei Xie, Xiao Gong

Ferroelectric capacitive memories (FCMs) utilize ferroelectric polarization to modulate device capacitance for data storage, providing a new technological pathway to achieve two-terminal non-destructive-read ferroelectric memory. In contrast to the conventional resistive memories, the unique capacitive operation mechanism of FCMs transfers the memory reading and in-memory computing to charge domain, offering ultra-high energy efficiency, better compatibility to large-scale array, and negligible read disturbance. In recent years, extensive research has been conducted on FCMs. Various device designs were proposed and experimentally demonstrated with progressively enhanced performance, showing remarkable potential of the novel technology. This article summarizes several typical FCM devices by introducing their mechanisms, comparing their performance, and discussing their limitations. We further investigate the capacitive crossbar array operation and review the recent progress in the FCM integration and array-level demonstrations. In addition, we present the computing-in-memory applications of the FCMs to realize ultra-low-power machine learning acceleration for future computing systems.

铁电电容存储器(fcm)利用铁电极化调制器件电容进行数据存储,为实现双端无损读取铁电存储器提供了新的技术途径。与传统的电阻式存储器相比,fcm独特的电容操作机制将存储器读取和内存计算转移到电荷域,具有超高的能量效率、更好的大规模阵列兼容性和可忽略的读取干扰。近年来,对fcm进行了广泛的研究。提出了多种器件设计方案并进行了实验验证,性能逐步提高,显示了新技术的巨大潜力。本文总结了几种典型的FCM器件,介绍了它们的机制,比较了它们的性能,并讨论了它们的局限性。我们进一步研究了电容交叉栅阵列的操作,并回顾了FCM集成和阵列级演示的最新进展。​
{"title":"Ferroelectric capacitive memories: devices, arrays, and applications","authors":"Zuopu Zhou,&nbsp;Leming Jiao,&nbsp;Zijie Zheng,&nbsp;Yue Chen,&nbsp;Kaizhen Han,&nbsp;Yuye Kang,&nbsp;Dong Zhang,&nbsp;Xiaolin Wang,&nbsp;Qiwen Kong,&nbsp;Chen Sun,&nbsp;Jiawei Xie,&nbsp;Xiao Gong","doi":"10.1186/s40580-024-00463-0","DOIUrl":"10.1186/s40580-024-00463-0","url":null,"abstract":"<div><p>\u0000 Ferroelectric capacitive memories (FCMs) utilize ferroelectric polarization to modulate device capacitance for data storage, providing a new technological pathway to achieve two-terminal non-destructive-read ferroelectric memory. In contrast to the conventional resistive memories, the unique capacitive operation mechanism of FCMs transfers the memory reading and in-memory computing to charge domain, offering ultra-high energy efficiency, better compatibility to large-scale array, and negligible read disturbance. In recent years, extensive research has been conducted on FCMs. Various device designs were proposed and experimentally demonstrated with progressively enhanced performance, showing remarkable potential of the novel technology. This article summarizes several typical FCM devices by introducing their mechanisms, comparing their performance, and discussing their limitations. We further investigate the capacitive crossbar array operation and review the recent progress in the FCM integration and array-level demonstrations. In addition, we present the computing-in-memory applications of the FCMs to realize ultra-low-power machine learning acceleration for future computing systems.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00463-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates 基于柔性衬底上排列纳米线集成的多栅类神经元晶体管
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-18 DOI: 10.1186/s40580-024-00472-z
João Neto, Abhishek Singh Dahiya, Ravinder Dahiya

The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot. This underlines the need for biological skin like processing in the e-skin. Herein, we present multi-gate field-effect transistors (v-FET) having capacitively coupled floating gate (FG) to mimic some of the neural functions. The v-FETs are obtained by deterministic assembly of ZnO nanowires on a flexible substrate using contactless dielectrophoresis method, followed metallization using conventional microfabrication steps. The spatial summation of two presynaptic inputs (applied at multiple control gates) of the transistor confirm their neuron-like response. The temporal summation (such as paired-pulse facilitation) by presented v-FETs further confirm their neuron-like mimicking with one presynaptic input. The temporal and spatial summation functions, demonstrated by the v-FET presented here, could open interesting new avenues for development of neuromorphic electronic skin (v-skin) with possibility of biological-skin like distributed computing.

生物皮肤中的感受器编码触觉数据的有趣方式激发了具有大脑启发或神经形态计算的电子皮肤(e-skin)的发展。从本地(近传感器)数据处理开始,有一种内在的机制在起作用,有助于缩小数据的规模。当考虑到大面积电子皮肤(如机器人的全身皮肤)中大量传感器产生的大量数据时,这一点尤其具有吸引力。这强调了在电子皮肤中处理生物皮肤的必要性。在这里,我们提出了具有电容耦合浮栅(FG)的多栅极场效应晶体管(v-FET)来模拟一些神经功能。v型场效应管是通过采用无接触介质电泳方法在柔性衬底上确定组装ZnO纳米线,然后采用传统的微加工步骤进行金属化而获得的。晶体管的两个突触前输入(应用于多个控制门)的空间总和证实了它们的神经元样响应。所提出的v- fet的时间累加(如配对脉冲易化)进一步证实了它们具有神经元样的突触前输入模拟。v-FET所展示的时间和空间求和函数可以为神经形态电子皮肤(v-skin)的发展开辟有趣的新途径,并有可能实现类似生物皮肤的分布式计算。
{"title":"Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates","authors":"João Neto,&nbsp;Abhishek Singh Dahiya,&nbsp;Ravinder Dahiya","doi":"10.1186/s40580-024-00472-z","DOIUrl":"10.1186/s40580-024-00472-z","url":null,"abstract":"<div><p>The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot. This underlines the need for biological skin like processing in the e-skin. Herein, we present multi-gate field-effect transistors (<i>v</i>-FET) having capacitively coupled floating gate (FG) to mimic some of the neural functions. The <i>v</i>-FETs are obtained by deterministic assembly of ZnO nanowires on a flexible substrate using contactless dielectrophoresis method, followed metallization using conventional microfabrication steps. The spatial summation of two presynaptic inputs (applied at multiple control gates) of the transistor confirm their neuron-like response. The temporal summation (such as paired-pulse facilitation) by presented <i>v</i>-FETs further confirm their neuron-like mimicking with one presynaptic input. The temporal and spatial summation functions, demonstrated by the <i>v</i>-FET presented here, could open interesting new avenues for development of neuromorphic electronic skin (<i>v</i>-skin) with possibility of biological-skin like distributed computing.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00472-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano Convergence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1