首页 > 最新文献

Nano Convergence最新文献

英文 中文
Effect of La and Si additives in Zr-doped HfO2 capacitors for pseudo-linear high-κ dielectric applications
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.1186/s40580-025-00477-2
Minjong Lee, Yong Chan Jung, Jin-Hyun Kim, Dushyant M. Narayan, Sehun Kang, Woo Young Park, Kivin Im, Jiyoung Kim

This study investigates the impact of dopants on Hf1–xZrxO2-based capacitors for high-performance, hysteresis-free dielectric applications. Control of the crystalline structure of Hf1–xZrxO2 films is crucial for achieving superior dielectric properties. The tetragonal (t) phase of Hf1–xZrxO2 exhibits anti-ferroelectric (AFE) characteristics and shows promise due to its high dielectric constant (κ). However, hysteresis behavior in polarization–voltage sweeps due to AFE behavior presents a significant challenge, primarily due to the high energy loss when implemented in dynamic random-access-memory (DRAM) applications. To achieve hysteresis-free operation, this study focuses on suppressing AFE switching within the DRAM voltage range through Si or La doping in Hf1–xZrxO2 films. Introducing small amounts of Si or La (< 1%) into Hf1–xZrxO2 capacitors effectively diminishes AFE switching by influencing which structural phases are favored: Si doping tends to favor the amorphous phase, while La doping promotes the formation of the t-phase. La doping shows particular promise in enhancing pseudo-linear dielectric performance. ~ 0.9% La-doped Hf0.25Zr0.75O2 capacitors exhibit a markedly improved equivalent oxide thickness (EOT) of ~ 4.8 Å and a reduced leakage current density (Jleak) of ~ 10–7 A/cm2 at 1 V, achieved at back-end-of-line (BEOL) compatible temperatures (< 400 °C). These results demonstrate a promising strategy for advancing energy-efficient high-κ dielectric materials in next-generation memory devices, offering a balanced combination of high capacitance, low leakage current, and BEOL compatibility.

Graphical Abstract

{"title":"Effect of La and Si additives in Zr-doped HfO2 capacitors for pseudo-linear high-κ dielectric applications","authors":"Minjong Lee,&nbsp;Yong Chan Jung,&nbsp;Jin-Hyun Kim,&nbsp;Dushyant M. Narayan,&nbsp;Sehun Kang,&nbsp;Woo Young Park,&nbsp;Kivin Im,&nbsp;Jiyoung Kim","doi":"10.1186/s40580-025-00477-2","DOIUrl":"10.1186/s40580-025-00477-2","url":null,"abstract":"<div><p>This study investigates the impact of dopants on Hf<sub>1–x</sub>Zr<sub>x</sub>O<sub>2</sub>-based capacitors for high-performance, hysteresis-free dielectric applications. Control of the crystalline structure of Hf<sub>1–x</sub>Zr<sub>x</sub>O<sub>2</sub> films is crucial for achieving superior dielectric properties. The tetragonal (t) phase of Hf<sub>1–x</sub>Zr<sub>x</sub>O<sub>2</sub> exhibits anti-ferroelectric (AFE) characteristics and shows promise due to its high dielectric constant (κ). However, hysteresis behavior in polarization–voltage sweeps due to AFE behavior presents a significant challenge, primarily due to the high energy loss when implemented in dynamic random-access-memory (DRAM) applications. To achieve hysteresis-free operation, this study focuses on suppressing AFE switching within the DRAM voltage range through Si or La doping in Hf<sub>1–x</sub>Zr<sub>x</sub>O<sub>2</sub> films. Introducing small amounts of Si or La (&lt; 1%) into Hf<sub>1–x</sub>Zr<sub>x</sub>O<sub>2</sub> capacitors effectively diminishes AFE switching by influencing which structural phases are favored: Si doping tends to favor the amorphous phase, while La doping promotes the formation of the t-phase. La doping shows particular promise in enhancing pseudo-linear dielectric performance. ~ 0.9% La-doped Hf<sub>0.25</sub>Zr<sub>0.75</sub>O<sub>2</sub> capacitors exhibit a markedly improved equivalent oxide thickness (EOT) of ~ 4.8 Å and a reduced leakage current density (J<sub>leak</sub>) of ~ 10<sup>–7</sup> A/cm<sup>2</sup> at 1 V, achieved at back-end-of-line (BEOL) compatible temperatures (&lt; 400 °C). These results demonstrate a promising strategy for advancing energy-efficient high-κ dielectric materials in next-generation memory devices, offering a balanced combination of high capacitance, low leakage current, and BEOL compatibility.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00477-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic threshold switching of As-embedded SiO2 selectors: charged oxygen vacancy model
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-03-04 DOI: 10.1186/s40580-025-00480-7
Hye Rim Kim, Tae Jun Seok, Tae Jung Ha, Jeong Hwan Song, Kyun Seong Dae, Sang Gil Lee, Hyun Seung Choi, Su Yong Park, Byung Joon Choi, Jae Hyuck Jang, Soo Gil Kim, Tae Joo Park

Sneak current issues in crossbar arrays of non-volatile memories can be effectively alleviated using threshold switching (TS)-based selectors. However, 1-selector–1-resistor integration requires coherence between the constituent materials and operational parameters of the two components. Here, we propose a highly coherent selector via in-depth investigation of the operation process of a fab-friendly As-SiO2 selector unit. The structural and electrical characteristics of an As-embedded SiO2 selector are analyzed, and the TS-on and -off operational mechanism is presented. Further, the critical control elements governing the selector operation are identified, including the electron charging into the oxygen vacancies in the SiO2 matrix and energy band alignment between the As cluster and charged oxygen vacancies in SiO2. Consequently, practical control strategies for the TS behavior are proposed with a pulse scheme applicable to actual device operation. The proposed TS operational mechanism and analytical methodology can contribute to interpreting and integrating various memory/selector components, thereby advancing their operational and integrative research.

Graphical abstract

使用基于阈值开关(TS)的选择器可以有效缓解非易失性存储器交叉条阵列中的偷电流问题。然而,1 个选择器 1 个电阻器的集成需要两个元件的组成材料和工作参数之间的一致性。在此,我们通过深入研究适合晶圆厂的 As-SiO2 选择器单元的运行过程,提出了一种高度协调的选择器。我们分析了 As 嵌入式二氧化硅选择器的结构和电气特性,并介绍了 TS 开和关的运行机制。此外,还确定了控制选择器运行的关键控制元件,包括电子对二氧化硅基体中氧空位的充电以及砷簇和二氧化硅中带电氧空位之间的能带排列。因此,针对 TS 行为提出了实用的控制策略和适用于实际器件运行的脉冲方案。所提出的 TS 运行机制和分析方法有助于解释和集成各种存储器/选择器元件,从而推动其运行和集成研究。
{"title":"Electronic threshold switching of As-embedded SiO2 selectors: charged oxygen vacancy model","authors":"Hye Rim Kim,&nbsp;Tae Jun Seok,&nbsp;Tae Jung Ha,&nbsp;Jeong Hwan Song,&nbsp;Kyun Seong Dae,&nbsp;Sang Gil Lee,&nbsp;Hyun Seung Choi,&nbsp;Su Yong Park,&nbsp;Byung Joon Choi,&nbsp;Jae Hyuck Jang,&nbsp;Soo Gil Kim,&nbsp;Tae Joo Park","doi":"10.1186/s40580-025-00480-7","DOIUrl":"10.1186/s40580-025-00480-7","url":null,"abstract":"<div><p>Sneak current issues in crossbar arrays of non-volatile memories can be effectively alleviated using threshold switching (TS)-based selectors. However, 1-selector–1-resistor integration requires coherence between the constituent materials and operational parameters of the two components. Here, we propose a highly coherent selector via in-depth investigation of the operation process of a fab-friendly As-SiO<sub>2</sub> selector unit. The structural and electrical characteristics of an As-embedded SiO<sub>2</sub> selector are analyzed, and the TS-on and -off operational mechanism is presented. Further, the critical control elements governing the selector operation are identified, including the electron charging into the oxygen vacancies in the SiO<sub>2</sub> matrix and energy band alignment between the As cluster and charged oxygen vacancies in SiO<sub>2</sub>. Consequently, practical control strategies for the TS behavior are proposed with a pulse scheme applicable to actual device operation. The proposed TS operational mechanism and analytical methodology can contribute to interpreting and integrating various memory/selector components, thereby advancing their operational and integrative research.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00480-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Persistent ferromagnetic ground state in pristine and Ni-doped Fe3GaTe2 flakes
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-25 DOI: 10.1186/s40580-024-00471-0
Ki-Hoon Son, Sehoon Oh, Junho Lee, Sobin Yun, Yunseo Shin, Shaohua Yan, Chaun Jang, Hong-Sub Lee, Hechang Lei, Se Young Park, Hyejin Ryu
{"title":"Correction: Persistent ferromagnetic ground state in pristine and Ni-doped Fe3GaTe2 flakes","authors":"Ki-Hoon Son,&nbsp;Sehoon Oh,&nbsp;Junho Lee,&nbsp;Sobin Yun,&nbsp;Yunseo Shin,&nbsp;Shaohua Yan,&nbsp;Chaun Jang,&nbsp;Hong-Sub Lee,&nbsp;Hechang Lei,&nbsp;Se Young Park,&nbsp;Hyejin Ryu","doi":"10.1186/s40580-024-00471-0","DOIUrl":"10.1186/s40580-024-00471-0","url":null,"abstract":"","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00471-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trapped-ion based nanoscale quantum sensing
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-21 DOI: 10.1186/s40580-025-00479-0
Jieun Yoo, Hyunsoo Kim, Hyerin Kim, Yeongseo Kim, Taeyoung Choi

Recent development of controlling quantum systems has enabled us to utilize the systems for quantum computing, communication, and sensing. In particular, quantum sensing has attracted attention to a broad community of science and technology, as it could surpass classical limitations in measuring physical quantities such as electric and magnetic field with unprecedented precision. Among various physical platforms for quantum sensing, trapped-ion based system possesses several advantages—atomic size, outstanding quantum coherence, and quantum properties. In this review, we introduce previous research efforts to utilize the trapped-ion system for reaching ultimate sensitivity and discuss future perspective and research directions in this emerging field.

Graphical Abstract

{"title":"Trapped-ion based nanoscale quantum sensing","authors":"Jieun Yoo,&nbsp;Hyunsoo Kim,&nbsp;Hyerin Kim,&nbsp;Yeongseo Kim,&nbsp;Taeyoung Choi","doi":"10.1186/s40580-025-00479-0","DOIUrl":"10.1186/s40580-025-00479-0","url":null,"abstract":"<div><p>Recent development of controlling quantum systems has enabled us to utilize the systems for quantum computing, communication, and sensing. In particular, quantum sensing has attracted attention to a broad community of science and technology, as it could surpass classical limitations in measuring physical quantities such as electric and magnetic field with unprecedented precision. Among various physical platforms for quantum sensing, trapped-ion based system possesses several advantages—atomic size, outstanding quantum coherence, and quantum properties. In this review, we introduce previous research efforts to utilize the trapped-ion system for reaching ultimate sensitivity and discuss future perspective and research directions in this emerging field.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00479-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in CMOS-compatible synthesis and integration of 2D materials
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-15 DOI: 10.1186/s40580-025-00478-1
Ajit Kumar Katiyar, Jonggyu Choi, Jong-Hyun Ahn

The upcoming generation of functional electronics in the era of artificial intelligence, and IoT requires extensive data storage and processing, necessitating further device miniaturization. Conventional Si CMOS technology is struggling to enhance integration density beyond a certain limit to uphold Moore’s law, primarily due to performance degradation at smaller dimensions caused by various physical effects, including surface scattering, quantum tunneling, and other short-channel effects. The two-dimensional materials have emerged as highly promising alternatives, which exhibit excellent electrical and mechanical properties at atomically thin thicknesses and show exceptional potential for future CMOS technology. This review article presents the chronological progress made in the development of two-dimensional materials-based CMOS devices with comprehensively discussing the advancements made in material production, device development, associated challenges, and the strategies to address these issues. The future prospects for the use of two-dimensional materials in functional CMOS circuitry are outlooked, highlighting key opportunities and challenges toward industrial adaptation.

Graphical Abstract

人工智能和物联网时代即将到来的新一代功能电子产品需要大量的数据存储和处理,这就要求设备进一步微型化。传统的硅 CMOS 技术难以超越一定的极限来提高集成密度,以坚持摩尔定律,这主要是由于各种物理效应(包括表面散射、量子隧道和其他短通道效应)导致器件在尺寸更小的情况下性能下降。二维材料已成为极具前景的替代材料,它们在原子厚度极薄的情况下表现出优异的电气和机械性能,在未来的 CMOS 技术中显示出非凡的潜力。这篇综述文章按时间顺序介绍了基于二维材料的 CMOS 器件的开发进展,全面讨论了在材料生产、器件开发、相关挑战以及解决这些问题的策略等方面取得的进展。文章展望了在功能 CMOS 电路中使用二维材料的未来前景,强调了实现工业适应性的关键机遇和挑战。
{"title":"Recent advances in CMOS-compatible synthesis and integration of 2D materials","authors":"Ajit Kumar Katiyar,&nbsp;Jonggyu Choi,&nbsp;Jong-Hyun Ahn","doi":"10.1186/s40580-025-00478-1","DOIUrl":"10.1186/s40580-025-00478-1","url":null,"abstract":"<div><p>The upcoming generation of functional electronics in the era of artificial intelligence, and IoT requires extensive data storage and processing, necessitating further device miniaturization. Conventional Si CMOS technology is struggling to enhance integration density beyond a certain limit to uphold Moore’s law, primarily due to performance degradation at smaller dimensions caused by various physical effects, including surface scattering, quantum tunneling, and other short-channel effects. The two-dimensional materials have emerged as highly promising alternatives, which exhibit excellent electrical and mechanical properties at atomically thin thicknesses and show exceptional potential for future CMOS technology. This review article presents the chronological progress made in the development of two-dimensional materials-based CMOS devices with comprehensively discussing the advancements made in material production, device development, associated challenges, and the strategies to address these issues. The future prospects for the use of two-dimensional materials in functional CMOS circuitry are outlooked, highlighting key opportunities and challenges toward industrial adaptation.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00478-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Freestanding VO2 membranes on epidermal nanomesh for ultra-sensitive correlated breathable sensors
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-07 DOI: 10.1186/s40580-025-00476-3
Dongha Kim, Dongju Lee, Jiseok Park, Jihoon Bae, Aiping Chen, Judith L. MacManus-Driscoll, Sungwon Lee, Shinbuhm Lee

The interest in highly sensitive sensors is rapidly increasing for detecting very tiny signals for Internet of Things devices. Here, we achieve ultra-sensitive correlated breathable sensors based on freestanding VO2 membranes. We fabricate the membranes by growing VO2 films onto sacrificial Sr3Al2O6 layer grown on SrTiO3, selectively dissolving the Sr3Al2O6 in water, and then rendering freestanding VO2 membrane on nanomesh. The nanomeshes are extremely flexible, sweat permeable, and readily skin-adhesive. The resistance of the VO2 membranes is reversibly tuned by human’s tiny mechanical stimuli and breath stimuli. The stimuli modulate the Peierls dimerization of one-dimensional V−V chains in the VO2 lattice which concomitantly controls the electron correlation and hence resistivity. Since our breathable sensors operate based on quantum-mechanical correlation effects, their sensitivity is 1−2 orders of magnitude higher than conventional tactile and respiratory sensors based on other materials. Thus, the freestanding membranes of correlated oxides on epidermal nanomeshes are multifunctional platforms for developing ultra-sensitive correlated breathable sensors.

Graphical Abstract

{"title":"Freestanding VO2 membranes on epidermal nanomesh for ultra-sensitive correlated breathable sensors","authors":"Dongha Kim,&nbsp;Dongju Lee,&nbsp;Jiseok Park,&nbsp;Jihoon Bae,&nbsp;Aiping Chen,&nbsp;Judith L. MacManus-Driscoll,&nbsp;Sungwon Lee,&nbsp;Shinbuhm Lee","doi":"10.1186/s40580-025-00476-3","DOIUrl":"10.1186/s40580-025-00476-3","url":null,"abstract":"<div><p>The interest in highly sensitive sensors is rapidly increasing for detecting very tiny signals for Internet of Things devices. Here, we achieve ultra-sensitive correlated breathable sensors based on freestanding VO<sub>2</sub> membranes. We fabricate the membranes by growing VO<sub>2</sub> films onto sacrificial Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> layer grown on SrTiO<sub>3</sub>, selectively dissolving the Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> in water, and then rendering freestanding VO<sub>2</sub> membrane on nanomesh. The nanomeshes are extremely flexible, sweat permeable, and readily skin-adhesive. The resistance of the VO<sub>2</sub> membranes is reversibly tuned by human’s tiny mechanical stimuli and breath stimuli. The stimuli modulate the Peierls dimerization of one-dimensional V−V chains in the VO<sub>2</sub> lattice which concomitantly controls the electron correlation and hence resistivity. Since our breathable sensors operate based on quantum-mechanical correlation effects, their sensitivity is 1−2 orders of magnitude higher than conventional tactile and respiratory sensors based on other materials. Thus, the freestanding membranes of correlated oxides on epidermal nanomeshes are multifunctional platforms for developing ultra-sensitive correlated breathable sensors.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00476-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current status of developed electrocatalysts for water splitting technologies: from experimental to industrial perspective
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-06 DOI: 10.1186/s40580-024-00468-9
Duy Thanh Tran, Phan Khanh Linh Tran, Deepanshu Malhotra, Thanh Hai Nguyen, Tran Thien An Nguyen, Nguyen Tram Anh Duong, Nam Hoon Kim, Joong Hee Lee

The conversion of electricity into hydrogen (H2) gas through electrochemical water splitting using efficient electrocatalysts has been one of the most important future technologies to create vast amounts of clean and renewable energy. Low-temperature electrolyzer systems, such as proton exchange membrane water electrolyzers, alkaline water electrolyzers, and anion exchange membrane water electrolyzers are at the forefront of current technologies. Their performance, however, generally depends on electricity costs and system efficiency, which can be significantly improved by developing high-performance electrocatalysts to enhance the kinetics of both the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction. Despite numerous active research efforts in catalyst development, the performance of water electrolysis remains insufficient for commercialization. Ongoing research into innovative electrocatalysts and an understanding of the catalytic mechanisms are critical to enhancing their activity and stability for electrolyzers. This is still a focus at academic institutes/universities and industrial R&D centers. Herein, we provide an overview of the current state and future directions of electrocatalysts and water electrolyzers for electrochemical H2 production. Additionally, we describe in detail the technological framework of electrocatalysts and water electrolyzers for H2 production as utilized by relevant global companies.

{"title":"Current status of developed electrocatalysts for water splitting technologies: from experimental to industrial perspective","authors":"Duy Thanh Tran,&nbsp;Phan Khanh Linh Tran,&nbsp;Deepanshu Malhotra,&nbsp;Thanh Hai Nguyen,&nbsp;Tran Thien An Nguyen,&nbsp;Nguyen Tram Anh Duong,&nbsp;Nam Hoon Kim,&nbsp;Joong Hee Lee","doi":"10.1186/s40580-024-00468-9","DOIUrl":"10.1186/s40580-024-00468-9","url":null,"abstract":"<p>The conversion of electricity into hydrogen (H<sub>2</sub>) gas through electrochemical water splitting using efficient electrocatalysts has been one of the most important future technologies to create vast amounts of clean and renewable energy. Low-temperature electrolyzer systems, such as proton exchange membrane water electrolyzers, alkaline water electrolyzers, and anion exchange membrane water electrolyzers are at the forefront of current technologies. Their performance, however, generally depends on electricity costs and system efficiency, which can be significantly improved by developing high-performance electrocatalysts to enhance the kinetics of both the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction. Despite numerous active research efforts in catalyst development, the performance of water electrolysis remains insufficient for commercialization. Ongoing research into innovative electrocatalysts and an understanding of the catalytic mechanisms are critical to enhancing their activity and stability for electrolyzers. This is still a focus at academic institutes/universities and industrial R&amp;D centers. Herein, we provide an overview of the current state and future directions of electrocatalysts and water electrolyzers for electrochemical H<sub>2</sub> production. Additionally, we describe in detail the technological framework of electrocatalysts and water electrolyzers for H<sub>2</sub> production as utilized by relevant global companies.</p>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00468-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lung-homing nanoliposomes for early intervention in NETosis and inflammation during acute lung injury
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-03 DOI: 10.1186/s40580-025-00475-4
Jungbum Kim, Donghyuk Seo, So-Yeol Yoo, Hye-Jin Lee, Jisun Kim, Ji Eun Yeom, Jae-Young Lee, Wooram Park, Kyung Soo Hong, Wonhwa Lee

Acute lung injury (ALI) is characterized by severe inflammation in lung tissue, excessive immune response and impaired lung function. In hospitalized high-risk patients and cases of secondary infection due to surgical contamination, it can lead to higher mortality rates and require immediate intervention. Currently, clinical treatments are limited in symptomatic therapy as mechanical ventilation and corticosteroids, having insufficient efficacy in mitigating the cause of progression to severe illness. Here we report a pulmonary targeting lung-homing nanoliposome (LHN) designed to attenuate excessive Neutrophil Extracellular Trap formation (NETosis) through sivelestat and DNase-1, coupled with an anti-inflammatory effect mediated by 25-hydroxycholesterol (25-HC), offering a promising intervention for the acute phase of ALI. Through intratracheal delivery, we intend prompt and constant action within the lungs to effectively prevent excessive NETosis. Isolated neutrophils from blood samples of severe ARDS patients demonstrated significant anti-NETosis effects, as well as reduced proinflammatory cytokine secretion. Furthermore, in a murine model of LPS-induced ALI, we confirmed improvements in lung histopathology, and early respiratory function. Also, attenuation of systemic inflammatory response syndrome (SIRS), with notable reductions in NETosis and neutrophil trafficking was investigated. This presents a targeted therapeutic approach that can be applied in early stages of high-risk patients to prevent severe pulmonary disease progression.

{"title":"Lung-homing nanoliposomes for early intervention in NETosis and inflammation during acute lung injury","authors":"Jungbum Kim,&nbsp;Donghyuk Seo,&nbsp;So-Yeol Yoo,&nbsp;Hye-Jin Lee,&nbsp;Jisun Kim,&nbsp;Ji Eun Yeom,&nbsp;Jae-Young Lee,&nbsp;Wooram Park,&nbsp;Kyung Soo Hong,&nbsp;Wonhwa Lee","doi":"10.1186/s40580-025-00475-4","DOIUrl":"10.1186/s40580-025-00475-4","url":null,"abstract":"<div><p>Acute lung injury (ALI) is characterized by severe inflammation in lung tissue, excessive immune response and impaired lung function. In hospitalized high-risk patients and cases of secondary infection due to surgical contamination, it can lead to higher mortality rates and require immediate intervention. Currently, clinical treatments are limited in symptomatic therapy as mechanical ventilation and corticosteroids, having insufficient efficacy in mitigating the cause of progression to severe illness. Here we report a pulmonary targeting lung-homing nanoliposome (LHN) designed to attenuate excessive Neutrophil Extracellular Trap formation (NETosis) through sivelestat and DNase-1, coupled with an anti-inflammatory effect mediated by 25-hydroxycholesterol (25-HC), offering a promising intervention for the acute phase of ALI. Through intratracheal delivery, we intend prompt and constant action within the lungs to effectively prevent excessive NETosis. Isolated neutrophils from blood samples of severe ARDS patients demonstrated significant anti-NETosis effects, as well as reduced proinflammatory cytokine secretion. Furthermore, in a murine model of LPS-induced ALI, we confirmed improvements in lung histopathology, and early respiratory function. Also, attenuation of systemic inflammatory response syndrome (SIRS), with notable reductions in NETosis and neutrophil trafficking was investigated. This presents a targeted therapeutic approach that can be applied in early stages of high-risk patients to prevent severe pulmonary disease progression.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00475-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-30 DOI: 10.1186/s40580-025-00474-5
Yongsu Lee, Hae-Won Lee, Su Jin Kim, Jeong Min Park, Byoung Hun Lee, Chang Goo Kang

Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of Al2O3-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor. These results highlight the potential of passivated metal-oxide thin films for developing reliable radiation-hardened semiconductor devices that can be used in harsh space environments. In addition, the relationship between low-frequency noise and defects due to oxygen vacancies was revealed, which can be utilized to improve device reliability.

{"title":"Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer","authors":"Yongsu Lee,&nbsp;Hae-Won Lee,&nbsp;Su Jin Kim,&nbsp;Jeong Min Park,&nbsp;Byoung Hun Lee,&nbsp;Chang Goo Kang","doi":"10.1186/s40580-025-00474-5","DOIUrl":"10.1186/s40580-025-00474-5","url":null,"abstract":"<div><p>Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of Al<sub>2</sub>O<sub>3</sub>-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor. These results highlight the potential of passivated metal-oxide thin films for developing reliable radiation-hardened semiconductor devices that can be used in harsh space environments. In addition, the relationship between low-frequency noise and defects due to oxygen vacancies was revealed, which can be utilized to improve device reliability.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Engineering extracellular vesicles for ROS scavenging and tissue regeneration
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-27 DOI: 10.1186/s40580-024-00470-1
Ahmed Abdal Dayem, Ellie Yan, Minjae Do, Yoojung Kim, Yeongseo Lee, Ssang-Goo Cho, Deok-Ho Kim
{"title":"Correction: Engineering extracellular vesicles for ROS scavenging and tissue regeneration","authors":"Ahmed Abdal Dayem,&nbsp;Ellie Yan,&nbsp;Minjae Do,&nbsp;Yoojung Kim,&nbsp;Yeongseo Lee,&nbsp;Ssang-Goo Cho,&nbsp;Deok-Ho Kim","doi":"10.1186/s40580-024-00470-1","DOIUrl":"10.1186/s40580-024-00470-1","url":null,"abstract":"","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano Convergence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1