{"title":"Neuroprotective Effect of Dexmedetomidine Pretreatment on Sevoflurane- Initiated Neurotoxicity <i>Via</i> the Mir-204-5p/SOX4 Axis.","authors":"Run Wang, Pengfei Liu, Fan Li, Hui Qiao","doi":"10.2174/0929866530666230530164913","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sevoflurane (Sev) is a type of volatile anesthetic commonly used in clinic practices and can initiate long-term neurotoxicity, while dexmedetomidine (Dex) possesses a neuroprotective function in multiple neurological disorders.</p><p><strong>Objective: </strong>This work expounded on the function of Dex pretreatment in Sev-initiated neurotoxicity.</p><p><strong>Methods: </strong>At first, human neuroblastoma cells (SK-N-SH cells) were treated with different concentrations of Sev or Dex, followed by the cell counting kit (CCK)-8 assay to decide the appropriate concentrations of Sev or Dex. Cell viability, lactate dehydrogenase (LDH) productions, and apoptotic rate of SK-N-SH cells were examined by the CCK-8 assay, LDH cytotoxicity kit, and flow cytometry assay in sequence. Further, reactive oxygen species (ROS) levels and proinflammatory cytokine contents were examined by the ROS assay kit and the enzyme-linked immunosorbent assay kits. The expression patterns of microRNA (miR)-204-5p and SRY-box transcription factor 4 (SOX4) in SK-N-SH cells were measured by real-time quantitative polymerase chain reaction or Western blotting. The binding relationship between miR-204-5p and SOX4 was confirmed by the dual-luciferase assay. After transfection of miR-204-5p mimics or SOX4 siRNA, the role of the miR-204-5p/SOX4 axis in Sev-initiated neurotoxicity was detected.</p><p><strong>Results: </strong>Sev treatment reduced SK-N-SH cell viability in a concentration-dependent manner, and Dex pretreatment diminished Sev-initiated neurotoxicity. Mechanically, Dex pretreatment limited Sevinduced upregulation of miR-204-5p and further increased SOX4 expression levels. miR-204-5p upregulation or SOX4 knockdown averted the neuroprotection function of Dex pretreatment in Sevinitiated neurotoxicity.</p><p><strong>Conclusion: </strong>Dex pretreatment decreased miR-204-5p expression levels and upregulated SOX4 expression levels, palliating Sev-initiated neurotoxicity.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0929866530666230530164913","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sevoflurane (Sev) is a type of volatile anesthetic commonly used in clinic practices and can initiate long-term neurotoxicity, while dexmedetomidine (Dex) possesses a neuroprotective function in multiple neurological disorders.
Objective: This work expounded on the function of Dex pretreatment in Sev-initiated neurotoxicity.
Methods: At first, human neuroblastoma cells (SK-N-SH cells) were treated with different concentrations of Sev or Dex, followed by the cell counting kit (CCK)-8 assay to decide the appropriate concentrations of Sev or Dex. Cell viability, lactate dehydrogenase (LDH) productions, and apoptotic rate of SK-N-SH cells were examined by the CCK-8 assay, LDH cytotoxicity kit, and flow cytometry assay in sequence. Further, reactive oxygen species (ROS) levels and proinflammatory cytokine contents were examined by the ROS assay kit and the enzyme-linked immunosorbent assay kits. The expression patterns of microRNA (miR)-204-5p and SRY-box transcription factor 4 (SOX4) in SK-N-SH cells were measured by real-time quantitative polymerase chain reaction or Western blotting. The binding relationship between miR-204-5p and SOX4 was confirmed by the dual-luciferase assay. After transfection of miR-204-5p mimics or SOX4 siRNA, the role of the miR-204-5p/SOX4 axis in Sev-initiated neurotoxicity was detected.
Results: Sev treatment reduced SK-N-SH cell viability in a concentration-dependent manner, and Dex pretreatment diminished Sev-initiated neurotoxicity. Mechanically, Dex pretreatment limited Sevinduced upregulation of miR-204-5p and further increased SOX4 expression levels. miR-204-5p upregulation or SOX4 knockdown averted the neuroprotection function of Dex pretreatment in Sevinitiated neurotoxicity.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis