{"title":"Plant-derived Cyclotides in Immunomodulation and their Therapeutic Potential.","authors":"Reema Mishra, Preeti Agarwal, Anshita Sharma, Meenal Mittal, Pooja Gulati, Aparajita Mohanty","doi":"10.2174/0109298665364479250214101422","DOIUrl":null,"url":null,"abstract":"<p><p>The incidences of immune-related disorders have drastically increased in recent years across the world population. Treatment and management of these diseases, especially autoimmune disorders, are complex and challenging. Available synthetic drugs are not completely effective and also pose serious side effects for the patients. Cyclotides are a class of plant-derived cyclic peptides (28-37 amino acids) with three conserved disulfide linkages establishing a cyclic cystine knot (CCK) motif that makes them very stable biomolecules. Their inherent stability, bioavailability and membrane-penetrating capabilities render them attractive potential pharmacological agents. Studies have demonstrated that cyclotides can either enhance or suppress immune responses, making them versatile candidates for treating various immune-related disorders. Of more than 1000 cyclotides discovered to date, only up to 15 native cyclotides (e.g. kalata B1, pase and caripe cyclotides) have been screened to demonstrate their immunomodulatory activity. Of special significance is the chemically synthesised lysine mutant of kalata B1 viz. [T20K], where preclinical studies have shown promise in the treatment of the autoimmune disorder, multiple sclerosis. In vivo studies in mice models have demonstrated that daily administration of 1mg/day of [T20K] led to a significant decrease in the level of cytokine secretion, lesser demyelination (<1%) and very low inflammatory index (<0.5), in the immunized mice. Moreover, when compared with other immunosuppressive drugs (azathioprine, prednisolone, and cyclosporine A) there was a notable drop in mortality and morbidity in mice administered with [T20K]. The cyclotides, kalata B1 and MCoTI-I have also been used as scaffolds to graft bioactive peptides with immunomodulatory activity. Subsequent in vitro and in vivo studies of these grafted cyclotides have demonstrated their therapeutic ability. Keeping in view the therapeutic potential of cyclotides as immunomodulatory peptides, the present review discusses its current research scenario and implications for the future in tackling immune-related disorders.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665364479250214101422","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The incidences of immune-related disorders have drastically increased in recent years across the world population. Treatment and management of these diseases, especially autoimmune disorders, are complex and challenging. Available synthetic drugs are not completely effective and also pose serious side effects for the patients. Cyclotides are a class of plant-derived cyclic peptides (28-37 amino acids) with three conserved disulfide linkages establishing a cyclic cystine knot (CCK) motif that makes them very stable biomolecules. Their inherent stability, bioavailability and membrane-penetrating capabilities render them attractive potential pharmacological agents. Studies have demonstrated that cyclotides can either enhance or suppress immune responses, making them versatile candidates for treating various immune-related disorders. Of more than 1000 cyclotides discovered to date, only up to 15 native cyclotides (e.g. kalata B1, pase and caripe cyclotides) have been screened to demonstrate their immunomodulatory activity. Of special significance is the chemically synthesised lysine mutant of kalata B1 viz. [T20K], where preclinical studies have shown promise in the treatment of the autoimmune disorder, multiple sclerosis. In vivo studies in mice models have demonstrated that daily administration of 1mg/day of [T20K] led to a significant decrease in the level of cytokine secretion, lesser demyelination (<1%) and very low inflammatory index (<0.5), in the immunized mice. Moreover, when compared with other immunosuppressive drugs (azathioprine, prednisolone, and cyclosporine A) there was a notable drop in mortality and morbidity in mice administered with [T20K]. The cyclotides, kalata B1 and MCoTI-I have also been used as scaffolds to graft bioactive peptides with immunomodulatory activity. Subsequent in vitro and in vivo studies of these grafted cyclotides have demonstrated their therapeutic ability. Keeping in view the therapeutic potential of cyclotides as immunomodulatory peptides, the present review discusses its current research scenario and implications for the future in tackling immune-related disorders.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis