Soft Robotic Finger with Energy-Coupled Quadrastability.

IF 6.4 2区 计算机科学 Q1 ROBOTICS Soft Robotics Pub Date : 2024-02-01 Epub Date: 2023-08-30 DOI:10.1089/soro.2022.0242
Zijie Sun, Tianqi Jiang, Zhenyu Wang, Pei Jiang, Yang Yang, Huaqiang Li, Teng Ma, Ji Luo
{"title":"Soft Robotic Finger with Energy-Coupled Quadrastability.","authors":"Zijie Sun, Tianqi Jiang, Zhenyu Wang, Pei Jiang, Yang Yang, Huaqiang Li, Teng Ma, Ji Luo","doi":"10.1089/soro.2022.0242","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of the human finger is a significant inspiration for designing soft robotic fingers that can achieve high speed and high force or perform delicate and complex tasks. Existing soft grippers and actuators can be excellent in specific capabilities. However, it is still challenging for them to meet an all-around performance as the human finger, characterized by high actuation speed, wide grasping range, sensing ability, and gentle and high-load grasping capability. The proposed tendon pulley quadrastable (TPQ) finger has combined these qualities in the conducted gripping tasks. A pair of elastic tendons is utilized as the sole energy reservoir to create a novel energy distribution pattern: energy-coupled quadrastability. An energy model is built to analyze and predict the behaviors of the TPQ finger. Mechanical instability is utilized to enhance the actuation speed. The proposed soft lever mechanism endows the TPQ finger with sensing ability. The energy barrier adjusting plates control the energy barrier, adjusting the sensitivity of both active and passive actuation mechanisms. The transition of four stable states forms preplanned trajectories that are applied to create multiple grasping manners. Experiments show that it can respond to stimuli and finish a grasping task in merely 31 ms, and its payload can reach 33.25 kg. At the same time, it can also handle fragile objects such as a piece of rose and grasp a wide range of objects ranging from a thin nut (3.3 mm in height) or a thin card (0.76 mm thick) to a football (220 mm).</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"140-156"},"PeriodicalIF":6.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0242","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of the human finger is a significant inspiration for designing soft robotic fingers that can achieve high speed and high force or perform delicate and complex tasks. Existing soft grippers and actuators can be excellent in specific capabilities. However, it is still challenging for them to meet an all-around performance as the human finger, characterized by high actuation speed, wide grasping range, sensing ability, and gentle and high-load grasping capability. The proposed tendon pulley quadrastable (TPQ) finger has combined these qualities in the conducted gripping tasks. A pair of elastic tendons is utilized as the sole energy reservoir to create a novel energy distribution pattern: energy-coupled quadrastability. An energy model is built to analyze and predict the behaviors of the TPQ finger. Mechanical instability is utilized to enhance the actuation speed. The proposed soft lever mechanism endows the TPQ finger with sensing ability. The energy barrier adjusting plates control the energy barrier, adjusting the sensitivity of both active and passive actuation mechanisms. The transition of four stable states forms preplanned trajectories that are applied to create multiple grasping manners. Experiments show that it can respond to stimuli and finish a grasping task in merely 31 ms, and its payload can reach 33.25 kg. At the same time, it can also handle fragile objects such as a piece of rose and grasp a wide range of objects ranging from a thin nut (3.3 mm in height) or a thin card (0.76 mm thick) to a football (220 mm).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有能量耦合四稳性的软体机器人手指
人类手指的性能是设计软体机器人手指的重要灵感来源,这些手指可以实现高速、高力或执行精细复杂的任务。现有的软机械手和致动器在特定功能方面表现出色。然而,要使它们像人类手指一样具有全面的性能,即具有高执行速度、宽抓取范围、传感能力、轻柔和高负荷抓取能力,仍然具有挑战性。所提出的腱滑轮四可变(TPQ)手指在执行抓取任务时结合了这些特性。利用一对弹性肌腱作为唯一的能量储存器,创造了一种新颖的能量分布模式:能量耦合四伸缩性。我们建立了一个能量模型来分析和预测 TPQ 手指的行为。利用机械不稳定性来提高致动速度。所提出的软杠杆机制赋予了 TPQ 手指感知能力。能量势垒调节板控制能量势垒,调节主动和被动致动机构的灵敏度。四种稳定状态的转换形成了预先计划的轨迹,可用于创建多种抓握方式。实验表明,它能在短短 31 毫秒内对刺激做出反应并完成抓取任务,有效载荷可达 33.25 千克。同时,它还能抓取易碎物体,如玫瑰花,并能抓取从薄螺母(3.3 毫米高)或薄卡片(0.76 毫米厚)到足球(220 毫米)等各种物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
期刊最新文献
A Biomimetic Adhesive Disc for Robotic Adhesion Sliding Inspired by the Net-Winged Midge Larva. YoMo: Yoshimura Continuum Manipulator for MR Environment. Soft-Rigid Hybrid Revolute and Prismatic Joints Using Multilayered Bellow-Type Soft Pneumatic Actuators: Design, Characterization, and Its Application as Soft-Rigid Hybrid Gripper. Soft Electromagnetic Sliding Actuators for Highly Compliant Planar Motions Using Microfluidic Conductive Coil Array. Thermo-Pneumatic Artificial Muscle: Air-Based Thermo-Pneumatic Artificial Muscles for Pumpless Pneumatic Actuation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1