Aucubin promotes activation of AMPK and alleviates cerebral ischemia/reperfusion injury in rats.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-11-01 Epub Date: 2023-08-22 DOI:10.1007/s12192-023-01372-7
Jin-Jing Zhao, Bo Zhao, Xiao Bai, Shuang Zhang, Rui Xu
{"title":"Aucubin promotes activation of AMPK and alleviates cerebral ischemia/reperfusion injury in rats.","authors":"Jin-Jing Zhao, Bo Zhao, Xiao Bai, Shuang Zhang, Rui Xu","doi":"10.1007/s12192-023-01372-7","DOIUrl":null,"url":null,"abstract":"<p><p>In the current investigation, we explored the benefits of aucubin against rodent ischemia/reperfusion (I/R) damages in brains and elucidated the role of 5'-AMP-activated protein kinase (AMPK) in its neuroprotective action. I/R model of brain was established in male three-month-old rats through 2 h of middle cerebral artery occlusion followed by two days of reperfusion. Aucubin boosted phosphorylation of AMPKα in ipsilateral cortex of injured rats. Then, rats were exposed to cerebral I/R damage and received treatment of aucubin and compound C (a well-known AMPK inhibitor). It was found that aucubin administration improved neurological symptom score, decreased infarct volume, and mitigated cerebral edema in injured rats. Aucubin administration upregulated Nrf2 expression and abated oxidative stress in ipsilateral cortex of injured rats. Aucubin administration reduced levels of multiple pro-inflammatory cytokines, suppressed microglial activation and neutrophil infiltration, and promoted M2 polarization in injured rats. More importantly, compound C abolished the neuroprotective, anti-oxidant and inflammation-modulating effects of aucubin in injured rats, at least in part. Therefore, we concluded that activation of AMPK by aucubin alleviated I/R injury in brain through abating oxidative stress and suppressing inflammation, identifying a potential candidate for those patients of ischemic stroke.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12192-023-01372-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the current investigation, we explored the benefits of aucubin against rodent ischemia/reperfusion (I/R) damages in brains and elucidated the role of 5'-AMP-activated protein kinase (AMPK) in its neuroprotective action. I/R model of brain was established in male three-month-old rats through 2 h of middle cerebral artery occlusion followed by two days of reperfusion. Aucubin boosted phosphorylation of AMPKα in ipsilateral cortex of injured rats. Then, rats were exposed to cerebral I/R damage and received treatment of aucubin and compound C (a well-known AMPK inhibitor). It was found that aucubin administration improved neurological symptom score, decreased infarct volume, and mitigated cerebral edema in injured rats. Aucubin administration upregulated Nrf2 expression and abated oxidative stress in ipsilateral cortex of injured rats. Aucubin administration reduced levels of multiple pro-inflammatory cytokines, suppressed microglial activation and neutrophil infiltration, and promoted M2 polarization in injured rats. More importantly, compound C abolished the neuroprotective, anti-oxidant and inflammation-modulating effects of aucubin in injured rats, at least in part. Therefore, we concluded that activation of AMPK by aucubin alleviated I/R injury in brain through abating oxidative stress and suppressing inflammation, identifying a potential candidate for those patients of ischemic stroke.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杜仲甙能促进 AMPK 的激活,缓解大鼠脑缺血再灌注损伤。
在本次研究中,我们探讨了杜仲甙对啮齿类动物脑缺血/再灌注(I/R)损伤的益处,并阐明了 5'-AMP 激活蛋白激酶(AMPK)在其神经保护作用中的作用。研究人员以三个月大的雄性大鼠为实验对象,通过2小时的大脑中动脉闭塞和两天的再灌注建立了大脑I/R模型。损伤大鼠同侧大脑皮层中的AMPKα磷酸化增强。然后,将大鼠置于脑I/R损伤中,并接受杜鹃素和化合物C(一种著名的AMPK抑制剂)的治疗。研究发现,杜鹃黄素能改善损伤大鼠的神经症状评分,减少梗死体积,减轻脑水肿。杜仲甙能上调 Nrf2 的表达,减轻受伤大鼠同侧大脑皮层的氧化应激。杜仲甙能降低多种促炎细胞因子的水平,抑制小胶质细胞活化和中性粒细胞浸润,并促进损伤大鼠的 M2 极化。更重要的是,化合物 C 至少部分消除了损伤大鼠体内杜鹃素的神经保护、抗氧化和炎症调节作用。因此,我们得出结论:杜仲甙激活 AMPK 可通过减轻氧化应激和抑制炎症减轻大脑 I/R 损伤,为缺血性中风患者找到了一种潜在的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1