Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response (UPR), ER-associated degradation (ERAD), and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.
骨关节炎(OA)的主要特征是关节软骨退化,发病率和致残率都很高。软骨细胞作为软骨内唯一的细胞类型,其功能表型对 OA 的发展至关重要。由于软骨的无血管性质及其有限的再生能力,损伤后的修复面临着巨大的挑战。各种细胞应激因素,包括缺氧、营养匮乏、氧化应激和胶原突变,都可能导致折叠错误的蛋白质在内质网(ER)中堆积,造成ER应激(ERS)。为了恢复ER的平衡以及细胞的活力和功能,一系列适应机制被触发,包括未折叠蛋白反应(UPR)、ER相关降解(ERAD)和ER吞噬。长期或严重的ERS可能会超出细胞的适应能力,导致细胞凋亡和自噬失调--这是导致软骨细胞损伤和OA进展的主要致病因素。本综述探讨了 OA 软骨细胞的 ERS 与细胞凋亡和自噬之间的关系,以确定预防和治疗 OA 的潜在治疗靶点和策略。
{"title":"Endoplasmic reticulum stress-mediated apoptosis and autophagy in osteoarthritis: from molecular mechanisms to therapeutic applications.","authors":"Yifan Lu, Jing Zhou, Hong Wang, Hua Gao, Eryu Ning, Zhiqiang Shao, Xing Yang, Yuefeng Hao","doi":"10.1016/j.cstres.2024.11.005","DOIUrl":"https://doi.org/10.1016/j.cstres.2024.11.005","url":null,"abstract":"<p><p>Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response (UPR), ER-associated degradation (ERAD), and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.cstres.2024.11.004
Xiaomin Gao, Xu Guo, Wenbo Yuan, Sunmin Jiang, Zihong Lu, Qing Luo, Yuan Zha, Ling Wang, Shu Li, Ke Wang, Xue Zhu, Ying Yao
HER2-positive breast cancer (HER2+ BC) is distinguished by its poor prognosis, propensity for early onset, and high risk of recurrence and metastasis. Consequently, anti-HER2-targeted therapy has emerged as a principal strategy in the treatment of this form of breast cancer. Pyrotinib, a novel irreversible pan-HER2 tyrosine kinase inhibitor, has brought fresh hope to patients with advanced HER2+ breast cancer. In this study, we conducted a comprehensive exploration of pyrotinib's anti-tumor mechanism. The in vitro results showed that pyrotinib significantly inhibited SKBR3 cells viability and induced apoptosis by promoting HER2 endocytosis and ubiquitylation, leading to HER2 degradation through the displacement of HSP90 from HER2. Beyond targeting the HER2 signaling pathway, pyrotinib also induced DNA damage, which was mediated by the activation of the ROS/HSF-1 signaling pathway and the downregulation of PCNA expression. Furthermore, the in vivo results demonstrated a pronounced anticancer effect of pyrotinib in the SKBR3 xenograft mouse model, concomitant with a reduction in HER2 expression. In summary, our findings provide novel insights into the mechanism of pyrotinib in the treatment of HER2+ BC.
{"title":"Pyrotinib induces cell death in HER2-positive breast cancer via triggering HSP90-dependent HER2 degradation and ROS/HSF-1-dependent oxidative DNA damage.","authors":"Xiaomin Gao, Xu Guo, Wenbo Yuan, Sunmin Jiang, Zihong Lu, Qing Luo, Yuan Zha, Ling Wang, Shu Li, Ke Wang, Xue Zhu, Ying Yao","doi":"10.1016/j.cstres.2024.11.004","DOIUrl":"https://doi.org/10.1016/j.cstres.2024.11.004","url":null,"abstract":"<p><p>HER2-positive breast cancer (HER2+ BC) is distinguished by its poor prognosis, propensity for early onset, and high risk of recurrence and metastasis. Consequently, anti-HER2-targeted therapy has emerged as a principal strategy in the treatment of this form of breast cancer. Pyrotinib, a novel irreversible pan-HER2 tyrosine kinase inhibitor, has brought fresh hope to patients with advanced HER2+ breast cancer. In this study, we conducted a comprehensive exploration of pyrotinib's anti-tumor mechanism. The in vitro results showed that pyrotinib significantly inhibited SKBR3 cells viability and induced apoptosis by promoting HER2 endocytosis and ubiquitylation, leading to HER2 degradation through the displacement of HSP90 from HER2. Beyond targeting the HER2 signaling pathway, pyrotinib also induced DNA damage, which was mediated by the activation of the ROS/HSF-1 signaling pathway and the downregulation of PCNA expression. Furthermore, the in vivo results demonstrated a pronounced anticancer effect of pyrotinib in the SKBR3 xenograft mouse model, concomitant with a reduction in HER2 expression. In summary, our findings provide novel insights into the mechanism of pyrotinib in the treatment of HER2+ BC.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.cstres.2024.11.003
Paolo De Los Rios, Mathieu E Rebeaud, Pierre Goloubinoff
A recent elegant cryo-electron tomography study of the populations of different GroEL-GroES chaperonins complexes in whole bacterial cells (Wagner, Carvajal et al. 2024) contributes to the resolution of a long-standing debate about their mechanism, and reconciles three-decade-old results from in vitro biochemical studies, with new, refined in situ observations. Biochemists working with purified proteins often wonder if their findings faithfully reflect the situation in the crowded environment of cells, when their proteins mingle with concentrated metabolites and bump into membranes and thousands of different unrelated proteins. Here, cryo-electron tomography confirmed that careful in vitro protein biochemistry research still has a bright future.
{"title":"An outmoded in vitro-inferred mechanism for chaperonin-accelerated protein refolding is confirmed in cells by cryo-electron tomography.","authors":"Paolo De Los Rios, Mathieu E Rebeaud, Pierre Goloubinoff","doi":"10.1016/j.cstres.2024.11.003","DOIUrl":"https://doi.org/10.1016/j.cstres.2024.11.003","url":null,"abstract":"<p><p>A recent elegant cryo-electron tomography study of the populations of different GroEL-GroES chaperonins complexes in whole bacterial cells (Wagner, Carvajal et al. 2024) contributes to the resolution of a long-standing debate about their mechanism, and reconciles three-decade-old results from in vitro biochemical studies, with new, refined in situ observations. Biochemists working with purified proteins often wonder if their findings faithfully reflect the situation in the crowded environment of cells, when their proteins mingle with concentrated metabolites and bump into membranes and thousands of different unrelated proteins. Here, cryo-electron tomography confirmed that careful in vitro protein biochemistry research still has a bright future.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.cstres.2024.11.002
Miguel Ferrer, Berta Buey, Laura Grasa, Jose Emilio Mesonero, Eva Latorre
Inflammatory bowel diseases (IBD) are driven by an exaggerated inflammatory response, which leads to a marked increase in oxidative stress. This, in turn, exacerbates the inflammatory process and causes significant cellular and tissue damage. Intestinal dysbiosis, a common observation in IBD patients, alters the production of bacterial metabolites, including short-chain fatty acids (SCFAs), which are key by-products of dietary fiber fermentation. While the role of SCFAs in intestinal physiology is still being elucidated, this study aimed to investigate their effects on intestinal oxidative stress, particularly under inflammatory conditions induced by the proinflammatory mediator tumour necrosis factor alpha (TNF-α). The Caco-2/TC7 cell line was employed as an in vitro model of the intestinal epithelium, and the cells were treated with a range of SCFAs, including acetate, propionate, and butyrate. The levels of protein and lipid oxidation were quantified, as well as the activity of antioxidant enzymes. Our findings demonstrate that microbiota-derived SCFAs can effectively mitigate TNF-α-induced oxidative stress by modulating antioxidant enzyme activity. The proinflammatory mediator TNF-α induces lipid peroxidation by inhibiting catalase and glutathione peroxidase activities. SCFAs are able to upregulate antioxidant enzyme activity to restore lipid oxidative levels. These results underscore the critical role of the gut microbiota in maintaining intestinal homeostasis and highlight the therapeutic potential of SCFAs in managing oxidative stress-related pathologies.
{"title":"Protective role of short-chain fatty acids on intestinal oxidative stress induced by TNF-α.","authors":"Miguel Ferrer, Berta Buey, Laura Grasa, Jose Emilio Mesonero, Eva Latorre","doi":"10.1016/j.cstres.2024.11.002","DOIUrl":"https://doi.org/10.1016/j.cstres.2024.11.002","url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBD) are driven by an exaggerated inflammatory response, which leads to a marked increase in oxidative stress. This, in turn, exacerbates the inflammatory process and causes significant cellular and tissue damage. Intestinal dysbiosis, a common observation in IBD patients, alters the production of bacterial metabolites, including short-chain fatty acids (SCFAs), which are key by-products of dietary fiber fermentation. While the role of SCFAs in intestinal physiology is still being elucidated, this study aimed to investigate their effects on intestinal oxidative stress, particularly under inflammatory conditions induced by the proinflammatory mediator tumour necrosis factor alpha (TNF-α). The Caco-2/TC7 cell line was employed as an in vitro model of the intestinal epithelium, and the cells were treated with a range of SCFAs, including acetate, propionate, and butyrate. The levels of protein and lipid oxidation were quantified, as well as the activity of antioxidant enzymes. Our findings demonstrate that microbiota-derived SCFAs can effectively mitigate TNF-α-induced oxidative stress by modulating antioxidant enzyme activity. The proinflammatory mediator TNF-α induces lipid peroxidation by inhibiting catalase and glutathione peroxidase activities. SCFAs are able to upregulate antioxidant enzyme activity to restore lipid oxidative levels. These results underscore the critical role of the gut microbiota in maintaining intestinal homeostasis and highlight the therapeutic potential of SCFAs in managing oxidative stress-related pathologies.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.cstres.2024.11.001
Renzhong Li, Kui Sun
Osteoarthritis(OA), a common degenerative joint disease, is characterized by the apoptosis of chondrocytes as a primary pathophysiological change, with endoplasmic reticulum stress(ERS) playing a crucial role. It has been demonstrated that an imbalance in endoplasmic reticulum(ER) homeostasis can lead to ERS, activating three cellular adaptive response pathways through the unfolded protein response(UPR) to restore ER homeostasis. Mild ERS exerts a protective effect on cells, while prolonged ERS that disrupts the self-regulatory balance of the endoplasmic reticulum activates apoptotic signaling pathways, leading to chondrocyte apoptosis and hastening OA progression. Hence, controlling the ERS signaling pathway and its apoptotic factors has become a critical focus for preventing and treating OA. This review aims to elucidate the key mechanisms of ERS pathway-induced apoptosis, associated targets, and regulatory pathways, offering valuable insights to enhance the mechanistic understanding of OA. And it also reviews the mechanisms studied for ERS-related drugs or compounds for the treatment of OA.
骨关节炎(OA)是一种常见的关节退行性疾病,以软骨细胞凋亡为主要病理生理变化,其中内质网应激(ERS)起着至关重要的作用。研究表明,内质网(ER)平衡失调可导致ERS,通过未折叠蛋白反应(UPR)激活三种细胞适应性反应途径,以恢复ER平衡。轻度的ERS对细胞有保护作用,而长时间的ERS会破坏内质网的自我调节平衡,激活细胞凋亡信号通路,导致软骨细胞凋亡,加速OA进展。因此,控制 ERS 信号通路及其凋亡因子已成为预防和治疗 OA 的关键重点。本综述旨在阐明ERS通路诱导凋亡的关键机制、相关靶点和调控途径,为加深对OA的机理认识提供有价值的见解。本综述还回顾了用于治疗 OA 的 ERS 相关药物或化合物的研究机制。
{"title":"Regulation of chondrocyte apoptosis in osteoarthritis by endoplasmic reticulum stress.","authors":"Renzhong Li, Kui Sun","doi":"10.1016/j.cstres.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.cstres.2024.11.001","url":null,"abstract":"<p><p>Osteoarthritis(OA), a common degenerative joint disease, is characterized by the apoptosis of chondrocytes as a primary pathophysiological change, with endoplasmic reticulum stress(ERS) playing a crucial role. It has been demonstrated that an imbalance in endoplasmic reticulum(ER) homeostasis can lead to ERS, activating three cellular adaptive response pathways through the unfolded protein response(UPR) to restore ER homeostasis. Mild ERS exerts a protective effect on cells, while prolonged ERS that disrupts the self-regulatory balance of the endoplasmic reticulum activates apoptotic signaling pathways, leading to chondrocyte apoptosis and hastening OA progression. Hence, controlling the ERS signaling pathway and its apoptotic factors has become a critical focus for preventing and treating OA. This review aims to elucidate the key mechanisms of ERS pathway-induced apoptosis, associated targets, and regulatory pathways, offering valuable insights to enhance the mechanistic understanding of OA. And it also reviews the mechanisms studied for ERS-related drugs or compounds for the treatment of OA.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.cstres.2024.10.005
Yanzhao Li , Jing Yan , Pingzhen Yang
{"title":"Corrigendum to “The mechanism and therapeutic strategies in doxorubicin induced cardiotoxicity: Role of programmed cell death” [Cell Stress Chaperones. 2024;29:666-680]","authors":"Yanzhao Li , Jing Yan , Pingzhen Yang","doi":"10.1016/j.cstres.2024.10.005","DOIUrl":"10.1016/j.cstres.2024.10.005","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Page 720"},"PeriodicalIF":3.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.cstres.2024.10.006
Milad J. Alasady , Marc L. Mendillo
The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss “the heat shock factor code”—our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
{"title":"The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience","authors":"Milad J. Alasady , Marc L. Mendillo","doi":"10.1016/j.cstres.2024.10.006","DOIUrl":"10.1016/j.cstres.2024.10.006","url":null,"abstract":"<div><div>The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss “the heat shock factor code”—our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 735-749"},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.cstres.2024.10.004
Brenda A. Schilke , Thomas Ziegelhoffer , Przemyslaw Domanski , Jaroslaw Marszalek , Bartlomiej Tomiczek , Elizabeth A. Craig
Protein factors bind ribosomes near the tunnel exit, facilitating protein trafficking and folding. In eukaryotes, the heterodimeric nascent polypeptide-associated complex (NAC) is the most abundant—equimolar to ribosomes. Saccharomyces cerevisiae has a minor β-type subunit (Nacβ2) in addition to abundant Nacβ1, and therefore two NAC heterodimers, α/β1 and α/β12. The additional beta NAC gene arose at the time of the whole genome duplication that occurred in the S. cerevisiae lineage. Nacβ2 has been implicated in regulating the fate of messenger RNA encoding ribosomal protein Rpl4 during translation via its interaction with the Caf130 subunit of the regulatory CCR4-Not complex. We found that Nacβ2 residues just C-terminal to the globular domain are required for its interaction with Caf130 and its negative effect on the growth of cells lacking Acl4, the specialized chaperone for Rpl4. Substitution of these Nacβ2 residues at homologous positions in Nacβ1 results in a chimeric protein that interacts with Caf130 and slows the growth of ∆acl4 cells lacking Nacβ2. Furthermore, alteration of residues in the N-terminus of Nacβ2 or chimeric Nacβ1 previously shown to affect ribosome binding overcomes the growth defect of ∆acl4. Our results are consistent with a model in which Nacβ2’s ribosome association per se or its precise positioning is necessary for productive recruitment of CCR4-Not via its interaction with the Caf130 subunit to drive Rpl4 messenger RNA degradation.
{"title":"Functional similarities and differences among subunits of the nascent polypeptide-associated complex (NAC) of Saccharomyces cerevisiae","authors":"Brenda A. Schilke , Thomas Ziegelhoffer , Przemyslaw Domanski , Jaroslaw Marszalek , Bartlomiej Tomiczek , Elizabeth A. Craig","doi":"10.1016/j.cstres.2024.10.004","DOIUrl":"10.1016/j.cstres.2024.10.004","url":null,"abstract":"<div><div>Protein factors bind ribosomes near the tunnel exit, facilitating protein trafficking and folding. In eukaryotes, the heterodimeric nascent polypeptide-associated complex (NAC) is the most abundant—equimolar to ribosomes. <em>Saccharomyces cerevisiae</em> has a minor β-type subunit (Nacβ2) in addition to abundant Nacβ1, and therefore two NAC heterodimers, α/β1 and α/β12. The additional beta NAC gene arose at the time of the whole genome duplication that occurred in the <em>S. cerevisiae</em> lineage. Nacβ2 has been implicated in regulating the fate of messenger RNA encoding ribosomal protein Rpl4 during translation <em>via</em> its interaction with the Caf130 subunit of the regulatory CCR4-Not complex. We found that Nacβ2 residues just C-terminal to the globular domain are required for its interaction with Caf130 and its negative effect on the growth of cells lacking Acl4, the specialized chaperone for Rpl4. Substitution of these Nacβ2 residues at homologous positions in Nacβ1 results in a chimeric protein that interacts with Caf130 and slows the growth of ∆<em>acl4</em> cells lacking Nacβ2. Furthermore, alteration of residues in the N-terminus of Nacβ2 or chimeric Nacβ1 previously shown to affect ribosome binding overcomes the growth defect of ∆<em>acl4</em>. Our results are consistent with a model in which Nacβ2’s ribosome association <em>per se</em> or its precise positioning is necessary for productive recruitment of CCR4-Not <em>via</em> its interaction with the Caf130 subunit to drive Rpl4 messenger RNA degradation.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 721-734"},"PeriodicalIF":3.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.cstres.2024.10.003
Lawrence E. Hightower
{"title":"In memoriam James S. Clegg (1933–2024)","authors":"Lawrence E. Hightower","doi":"10.1016/j.cstres.2024.10.003","DOIUrl":"10.1016/j.cstres.2024.10.003","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 718-719"},"PeriodicalIF":3.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.cstres.2024.10.002
Rebecca A. Sager , Sarah J. Backe , Jennifer Heritz , Mark R. Woodford , Dimitra Bourboulia , Mehdi Mollapour
The serine/threonine Protein Phosphatase-5 (PP5) plays an essential role in regulating hormone and stress-induced signaling networks as well as extrinsic apoptotic pathways in cells. Unlike other Protein Phosphatases, PP5 possesses both regulatory and catalytic domains, and its function is further modulated through post-translational modifications (PTMs). PP5 contains a tetratricopeptide repeat (TPR) domain, which usually inhibits its phosphatase activity by blocking the active site (closed conformation). Certain activators bind to the PP5–TPR domain, alleviating this inhibition and allowing the catalytic domain to adopt an active (open) conformation. While this mechanism has been proposed based on structural and biophysical studies, PP5 conformational changes and activity have yet to be observed in cells. Here, we designed and developed a flow cytometry-based fluorescence resonance energy transfer (FC-FRET) method, enabling real-time observation of PP5 autoinhibition and activation within live mammalian cells. By quantifying FRET efficiency using sensitized emission, we established a standardized and adaptable data acquisition workflow. Our findings revealed that, in a cellular context, PP5 exists in multiple conformational states, none of which alone fully predicts its activity. Additionally, we have demonstrated that PTMs such as phosphorylation and SUMOylation impact PP5 conformational changes, representing a significant advancement in our understanding of its regulatory mechanisms.
{"title":"Flow cytometry FRET reveals post-translational modifications drive Protein Phosphatase-5 conformational changes in mammalian cells","authors":"Rebecca A. Sager , Sarah J. Backe , Jennifer Heritz , Mark R. Woodford , Dimitra Bourboulia , Mehdi Mollapour","doi":"10.1016/j.cstres.2024.10.002","DOIUrl":"10.1016/j.cstres.2024.10.002","url":null,"abstract":"<div><div>The serine/threonine Protein Phosphatase-5 (PP5) plays an essential role in regulating hormone and stress-induced signaling networks as well as extrinsic apoptotic pathways in cells. Unlike other Protein Phosphatases, PP5 possesses both regulatory and catalytic domains, and its function is further modulated through post-translational modifications (PTMs). PP5 contains a tetratricopeptide repeat (TPR) domain, which usually inhibits its phosphatase activity by blocking the active site (closed conformation). Certain activators bind to the PP5–TPR domain, alleviating this inhibition and allowing the catalytic domain to adopt an active (open) conformation. While this mechanism has been proposed based on structural and biophysical studies, PP5 conformational changes and activity have yet to be observed in cells. Here, we designed and developed a flow cytometry-based fluorescence resonance energy transfer (FC-FRET) method, enabling real-time observation of PP5 autoinhibition and activation within live mammalian cells. By quantifying FRET efficiency using sensitized emission, we established a standardized and adaptable data acquisition workflow. Our findings revealed that, in a cellular context, PP5 exists in multiple conformational states, none of which alone fully predicts its activity. Additionally, we have demonstrated that PTMs such as phosphorylation and SUMOylation impact PP5 conformational changes, representing a significant advancement in our understanding of its regulatory mechanisms.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 6","pages":"Pages 709-717"},"PeriodicalIF":3.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}