Decoding Visual Spatial Attention Control.

Sreenivasan Meyyappan, Abhijit Rajan, Qiang Yang, George R Mangun, Mingzhou Ding
{"title":"Decoding Visual Spatial Attention Control.","authors":"Sreenivasan Meyyappan, Abhijit Rajan, Qiang Yang, George R Mangun, Mingzhou Ding","doi":"10.1101/2023.08.05.552084","DOIUrl":null,"url":null,"abstract":"<p><p>In models of visual spatial attention control, it is commonly held that top-down control signals originate in the dorsal attention network, propagating to the visual cortex to modulate baseline neural activity and bias sensory processing. However, the precise distribution of these top-down influences across different levels of the visual hierarchy is debated. In addition, it is unclear whether these changes in baseline neural activity directly translate into improved performance. We analyzed attention-related baseline activity during the anticipatory period of a trial-by-trial voluntary spatial attention task, using two independent fMRI datasets, and two different analytic approaches. First, as in prior studies, univariate analysis showed that covert attention significantly enhanced baseline neural activity in higher-order visual areas contralateral to the attended visual hemifield, while effects in lower-order visual areas (e.g., V1) were weaker and more variable. Second, in contrast, multivariate pattern analysis (MVPA) revealed significant decoding of attention conditions across all visual cortical areas, with lower-order visual areas exhibiting higher decoding accuracies than higher-order areas. Third, decoding accuracy, rather than the magnitude of univariate activation, was a better predictor of a subject's stimulus discrimination performance. Finally, the MVPA results were replicated across two experimental conditions, where the direction of spatial attention was either externally instructed by a cue or based on the participants free choice decision about where to attend. Together, these findings offer new insights into the extent of attentional biases in the visual hierarchy under top-down control, and how these biases influence both sensory processing and behavioral performance.</p><p><strong>Highlights: </strong>Multivariate pattern analysis revealed the presence of top-down attentional biasing signals in all areas of the visual hierarchy whereas univariate analysis was not able to reveal the full extent of attentional biasing in the visual cortex.The decoding accuracy derived from the MVPA analysis but not the magnitude difference derived from the univariate analysis predicted the subject's behavioral performance in stimulus discrimination.The MVPA results were consistent across two experimental conditions where the direction of spatial attention was driven either by external instructions or from purely internal decisions.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.08.05.552084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In models of visual spatial attention control, it is commonly held that top-down control signals originate in the dorsal attention network, propagating to the visual cortex to modulate baseline neural activity and bias sensory processing. However, the precise distribution of these top-down influences across different levels of the visual hierarchy is debated. In addition, it is unclear whether these changes in baseline neural activity directly translate into improved performance. We analyzed attention-related baseline activity during the anticipatory period of a trial-by-trial voluntary spatial attention task, using two independent fMRI datasets, and two different analytic approaches. First, as in prior studies, univariate analysis showed that covert attention significantly enhanced baseline neural activity in higher-order visual areas contralateral to the attended visual hemifield, while effects in lower-order visual areas (e.g., V1) were weaker and more variable. Second, in contrast, multivariate pattern analysis (MVPA) revealed significant decoding of attention conditions across all visual cortical areas, with lower-order visual areas exhibiting higher decoding accuracies than higher-order areas. Third, decoding accuracy, rather than the magnitude of univariate activation, was a better predictor of a subject's stimulus discrimination performance. Finally, the MVPA results were replicated across two experimental conditions, where the direction of spatial attention was either externally instructed by a cue or based on the participants free choice decision about where to attend. Together, these findings offer new insights into the extent of attentional biases in the visual hierarchy under top-down control, and how these biases influence both sensory processing and behavioral performance.

Highlights: Multivariate pattern analysis revealed the presence of top-down attentional biasing signals in all areas of the visual hierarchy whereas univariate analysis was not able to reveal the full extent of attentional biasing in the visual cortex.The decoding accuracy derived from the MVPA analysis but not the magnitude difference derived from the univariate analysis predicted the subject's behavioral performance in stimulus discrimination.The MVPA results were consistent across two experimental conditions where the direction of spatial attention was driven either by external instructions or from purely internal decisions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视觉皮层活动的自上而下偏置编码关注信息并促进视觉空间注意力的行为表现
自上而下的注意力在选择相关刺激和抑制干扰信息方面起着至关重要的作用。在自上而下的视觉空间注意过程中,来自背侧注意网络的控制信号会调节视觉皮层的基线神经元活动,使其倾向于与任务相关的刺激。虽然已有多项研究证明,预期注意期间的基线偏移发生在多个视觉区域,但这种效应尚未在整个视觉层次中得到系统研究,尤其是当不同的注意条件与刺激和任务因素相匹配时。在这项 fMRI 研究中,我们使用单变量和多变量(MVPA)分析对多个视觉皮层区域的预期注意信号进行了研究。首先,单变量分析在高阶视觉区域产生了显著的激活差异,在早期视觉区域的效应较弱。其次,与此相反,MVPA 解码在预测所有视觉区域和 IPS 的注意条件时都有显著效果,低阶视觉区域(如 V1)的解码准确性高于高阶视觉区域(如 LO1)。第三,解码准确性的强弱可以预测辨别任务中的行为表现。所有结果都具有高度的可重复性,并在两个数据集上保持一致,这两个数据集具有相同的实验范式,但在两个研究地点记录,而且在两种实验条件下,空间注意的方向是由外部指令(线索指示注意)或内部决定(自由选择注意)驱动的。我们的研究结果提供了明确的证据,证明自上而下的注意控制信号会选择性地偏向整个视觉层次的神经元处理过程,而且这种偏向与任务表现相关,这是以往的单变量研究无法提供的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-supervised segmentation and characterization of fiber bundles in anatomic tracing data. Single neuron contributions to the auditory brainstem EEG. Neural substrates of cold nociception in Drosophila larva. Inversions Can Accumulate Balanced Sexual Antagonism: Evidence from Simulations and Drosophila Experiments. Programming megakaryocytes to produce engineered platelets for delivering non-native proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1